
Computer Vision System Toolbox™

User’s Guide

R2011b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Computer Vision System Toolbox™ User’s Guide

© COPYRIGHT 2000–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
July 2004 First printing New for Version 1.0 (Release 14)
October 2004 Second printing Revised for Version 1.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.2 (Release 14SP3)
November 2005 Online only Revised for Version 2.0 (Release 14SP3+)
March 2006 Online only Revised for Version 2.1 (Release 2006a)
September 2006 Online only Revised for Version 2.2 (Release 2006b)
March 2007 Online only Revised for Version 2.3 (Release 2007a)
September 2007 Online only Revised for Version 2.4 (Release 2007b)
March 2008 Online only Revised for Version 2.5 (Release 2008a)
October 2008 Online only Revised for Version 2.6 (Release 2008b)
March 2009 Online only Revised for Version 2.7 (Release 2009a)
September 2009 Online only Revised for Version 2.8 (Release 2009b)
March 2010 Online only Revised for Version 3.0 (Release 2010a)
September 2010 Online only Revised for Version 3.1 (Release 2010b)
April 2011 Online only Revised for Version 4.0 (Release 2011a)
September 2011 Online only Revised for Version 4.1 (Release 2011b)

Contents

Input, Output, and Conversions

1
File Opening, Loading and Saving 1-2
Import from Video Files . 1-2
Export to Video Files . 1-5
Batch Process Image Files . 1-6
Display a Sequence of Images . 1-9
Partition Video Frames to Multiple Image Files 1-11
Combine Video and Audio Streams into a Single Video
File . 1-15

Import MATLAB Workspace Variables 1-16
Import a Live Video Stream . 1-17

Colorspace Formatting and Conversions 1-19
Resample Image Chroma . 1-19
Convert Intensity to Binary Images 1-23
Convert R’G’B’ to Intensity Images 1-35
Process Multidimensional Color Video Signals 1-40

Data Formats . 1-47
Video Formats . 1-47
Video Data Stored in Column-Major Format 1-48
Image Formats . 1-48

Display and Graphics

2
Display . 2-2
View Streaming Video in MATLAB using Video Player and
Deployable Video Player System Objects 2-2

Preview Video in MATLAB using MPlay Function 2-2
View Video in Simulink using the Video Viewer and To
Video Display Blocks . 2-4

v

View Video in Simulink using MPlay Function as a Floating
Scope . 2-4

MPlay . 2-7

Graphics . 2-24
Abandoned Object Detection . 2-24
Annotate Video Files with Frame Numbers 2-30

Registration and Stereo Vision

3
Feature Detection, Extraction, and Matching 3-2
Detect Edges in Images . 3-2
Detect Lines in Images . 3-10
Detect Corner Features in an Image 3-14
Find Possible Point Matches Between Two Images 3-14
Measure an Angle Between Lines . 3-16

Image Registration . 3-28
Automatically Determine Geometric Transform for Image
Registration . 3-28

Transform Images and Display Registration Results 3-29
Remove the Effect of Camera Motion from a Video
Stream. 3-30

Stereo Vision . 3-31
Compute Disparity Depth Map . 3-31
Find Fundamental Matrix Describing Epipolar
Geometry . 3-32

Rectify Stereo Images . 3-34

vi Contents

Motion Analysis and Tracking

4
Detect and Track Moving Objects Using Gaussian
Mixture Models . 4-2

Video Mosaicking . 4-3

Track an Object Using Correlation 4-4

Create a Panoramic Scene . 4-12

Geometric Transformations

5
Rotate an Image . 5-2

Resize an Image . 5-9

Crop an Image . 5-15

Interpolation Methods . 5-21
Nearest Neighbor Interpolation . 5-21
Bilinear Interpolation . 5-22
Bicubic Interpolation . 5-23

Automatically Determine Geometric Transform for
Image Registration . 5-25

Filters, Transforms, and Enhancements

6
Adjust the Contrast of Intensity Images 6-2

vii

Adjust the Contrast of Color Images 6-8

Remove Periodic Noise from a Video 6-14

Remove Salt and Pepper Noise from Images 6-23

Sharpen an Image . 6-30

Statistics and Morphological Operations

7
Find the Histogram of an Image . 7-2

Correct Nonuniform Illumination 7-9

Count Objects in an Image . 7-17

Code Generation

8
System Objects that Generate Code 8-2

Functions that Generate Code . 8-6

Shared Library Dependencies . 8-7

Accelerating Simulink Models . 8-8

Index

viii Contents

1

Input, Output, and
Conversions

Learn how to import and export videos, and perform color space and video
image conversions.

• “File Opening, Loading and Saving” on page 1-2

• “Colorspace Formatting and Conversions” on page 1-19

• “Data Formats” on page 1-47

1 Input, Output, and Conversions

File Opening, Loading and Saving

In this section...

“Import from Video Files” on page 1-2

“Export to Video Files” on page 1-5

“Batch Process Image Files” on page 1-6

“Display a Sequence of Images” on page 1-9

“Partition Video Frames to Multiple Image Files” on page 1-11

“Combine Video and Audio Streams into a Single Video File” on page 1-15

“Import MATLAB Workspace Variables” on page 1-16

“Import a Live Video Stream” on page 1-17

Import from Video Files
In this example, you use the From Multimedia File source block to import a
video stream into a Simulink® model and the To Video Display sink block to
view it. This procedure assumes you are working on a Windows platform.

You can open the example model by typing

ex_import_mmf

at the MATLAB® command line.

1 Run your model.

2 View your video in the To Video Display window that automatically
appears when you start your simulation.

1-2

File Opening, Loading and Saving

Note The video that is displayed in the To Video Display window runs at
the frame rate that corresponds to the input sample time. To run the video
as fast as Simulink processes the video frames, use the Video Viewer block.

You have now imported and displayed a multimedia file in the Simulink
model. In the “Export to Video Files” on page 1-5 example you can manipulate
your video stream and export it to a multimedia file.

For more information on the blocks used in this example, see the From
Multimedia File and To Video Display block reference pages. To listen to
audio associated with an AVI file, use the To Audio Device block in DSP
System Toolbox™ software.

Setting Block Parameters for this Example
The block parameters in this example were modified from default values as
follows:

1-3

1 Input, Output, and Conversions

Block Parameter

From Multimedia
File

Use the From Multimedia File block to import the
multimedia file into the model:

• If you do not have your own multimedia file, use
the default vipmen.avi file, for the File name
parameter.

• If the multimedia file is on your MATLAB path,
enter the filename for the File name parameter.

• If the file is not on your MATLAB path, use the
Browse button to locate the multimedia file.

• Set the Image signal parameter to Separate
color signals.

By default, the Number of times to play file
parameter is set to inf. The model continues to play
the file until the simulation stops.

To Video Display Use the To Video Display block to view the
multimedia file.

• Image signal: Separate color signals

Set this parameter from the Settings menu of the
display viewer.

Configuration Parameters
You can locate the Configuration Parameters by selecting Configuration
Parameters from the Simulation menu. For this example, the parameters
on the Solver pane, are set as follows:

• Stop time = 20

• Type = Fixed-step

• Solver = Discrete (no continuous states)

1-4

File Opening, Loading and Saving

Export to Video Files
The Computer Vision System Toolbox™ blocks enable you to export video
data from your Simulink model. In this example, you use the To Multimedia
File block to export a multimedia file from your model. This example also uses
Gain blocks from the Math Operations Simulink library.

You can open the example model by typing

ex_export_mmf

at the MATLAB command line.

1 Run your model.

2 You can view your video in the To Video Display window.

By increasing the red, green, and blue color values, you increase the contrast
of the video. The To Multimedia File block exports the video data from the
Simulink model to a multimedia file that it creates in your current folder.

This example manipulated the video stream and exported it from a Simulink
model to a multimedia file. For more information, see the To Multimedia File
block reference page.

Setting Block Parameters for this Example
The block parameters in this example were modified from default values as
follows:

1-5

1 Input, Output, and Conversions

Block Parameter

Gain The Gain blocks are used to increase the red, green,
and blue values of the video stream. This increases
the contrast of the video:

• Main pane, Gain = 1.2

• Signal Attributes pane, Output data type =
Inherit: Same as input

To Multimedia File The To Multimedia File block exports the video to
a multimedia file:

• Output file name = my_output.avi

• Write = Video only

• Image signal = Separate color signals

Configuration Parameters
You can locate the Configuration Parameters by selecting Configuration
Parameters from the Simulation menu. For this example, the parameters
on the Solver pane, are set as follows:

• Stop time = 20

• Type = Fixed-step

• Solver = Discrete (no continuous states)

Batch Process Image Files
A common image processing task is to apply an image processing algorithm
to a series of files. In this example, you import a sequence of images from a
folder into the MATLAB workspace.

Note In this example, the image files are a set of 10 microscope images of rat
prostate cancer cells. These files are only the first 10 of 100 images acquired.

1-6

File Opening, Loading and Saving

1 Specify the folder containing the images, and use this information to create
a list of the file names, as follows:

fileFolder = fullfile(matlabroot,'toolbox','images','imdemos');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
fileNames = {dirOutput.name}'

2 View one of the images, using the following command sequence:

I = imread(fileNames{1});
imshow(I);
text(size(I,2),size(I,1)+15, ...

'Image files courtesy of Alan Partin', ...
'FontSize',7,'HorizontalAlignment','right');

text(size(I,2),size(I,1)+25,
'Johns Hopkins University', ...
'FontSize',7,'HorizontalAlignment','right');

3 Use a for loop to create a variable that stores the entire image sequence.
You can use this variable to import the sequence into Simulink.

for i = 1:length(fileNames)
my_video(:,:,i) = imread(fileNames{i});

end

4 Run your model. You can view the image sequence in the Video Viewer
window.

1-7

1 Input, Output, and Conversions

Because the Video From Workspace block’s Sample time parameter is set to
1 and the “Configuration Parameters” on page 1-10 Stop time is set to 10, the
Video Viewer block displays 10 images before the simulation stops.

For more information on the blocks used in this example, see the Video
From Workspace and Video Viewer block reference pages. For additional
information about batch processing, see the Batch Processing Image Files
Using Distributed Computing demo in Image Processing Toolbox. You can
run this demo by typing ipexbatch at the MATLAB command prompt.

Configuration Parameters
You can locate the Configuration Parameters by selecting Configuration
Parameters from the Simulation menu. For this example, the parameters
on the Solver pane, are set as follows:

• Stop time = 10

• Type = Fixed-step

1-8

File Opening, Loading and Saving

• Solver = Discrete (no continuous states)

Display a Sequence of Images
This example displays a sequence of images, which were saved in a folder,
and then stored in a variable in the MATLAB workspace. At load time, this
model executes the code from the “Batch Process Image Files” on page 1-6
example, which stores images in a workspace variable.

You can open the example model by typing

ex_display_sequence_of_images

at the MATLAB command line.

1 The Video From Workspace block reads the files from the MATLAB
workspace. The Signal parameter is set to the name of the variable for the
stored images. For this example, it is set to my_video.

2 The Video Viewer block displays the sequence of images.

3 Run your model. You can view the image sequence in the Video Viewer
window.

1-9

1 Input, Output, and Conversions

4 Because the Video From Workspace block’s Sample time parameter is set
to 1 and the Stop time parameter in the configuration parameters, is set to
10, the Video Viewer block displays 10 images before the simulation stops.

Pre-loading Code
To find or modify the pre-loaded code, select the Callbacks tab in theModel
Properties dialog located under File >Model Properties. For more details
on how to set-up callbacks, see “Using Callback Functions”.

Configuration Parameters
You can locate the Configuration Parameters by selecting Configuration
Parameters from the Simulation menu. For this example, the parameters
on the Solver pane, are set as follows:

• Stop time = 10

1-10

File Opening, Loading and Saving

• Type = Fixed-step

• Solver = Discrete (no continuous states)

Partition Video Frames to Multiple Image Files
In this example, you use the To Multimedia File block, the Enabled Subsystem
block, and a trigger signal, to save portions of one AVI file to three separate
AVI files.

You can open the example model by typing

ex_vision_partition_video_frames_to_multiple_files

at the MATLAB command line.

1 Run your model.

2 The model saves the three output AVI files in your current folder.

3 View the resulting files by typing the following commands at the MATLAB
command prompt:

mplay output1.avi
mplay output2.avi
mplay output3.avi

4 Press the Play button on the MPlay GUI.

For more information on the blocks used in this example, see the From
Multimedia File, Insert Text, Enabled Subsystem, and To Multimedia File
block reference pages.

Setting Block Parameters for this Example
The block parameters in this example were modified from default values as
follows:

1-11

1 Input, Output, and Conversions

Block Parameter

From Multimedia
File

The From Multimedia File block imports an AVI file
into the model.

• Cleared Inherit sample time from file checkbox.

Insert Text The example uses the Insert Text block to annotate
the video stream with frame numbers. The block
writes the frame number in green, in the upper-left
corner of the output video stream.

• Text: 'Frame %d'

• Color: [0 1 0]

• Location: [10 10]

To Multimedia
File

The To Multimedia File blocks send the video stream
to three separate AVI files. These block parameters
were modified as follows:

• Output file name: output1.avi, output2.avi,
and output3.avi, respectively

• Write: Video only

Counter The Counter block counts the number of video
frames. The example uses this information to specify
which frames are sent to which file. The block
parameters are modified as follows:

• Count event: Free running

• Initial count: 1

• Output: Count

• Cleared Reset input check box.

• Sample time: 1/30

• Count data type: uint16

1-12

File Opening, Loading and Saving

Block Parameter

Compare to
Constant

The Compare to Constant block sends frames 1 to
9 to the first AVI file. The block parameters are
modified as follows:

• Operator: <

• Constant value: 10

Compare to
Constant1
Compare to
Constant2

The Compare to Constant1 and Compare to
Constant2 blocks send frames 10 to 19 to the second
AVI file. The block parameters are modified as
follows:

• Operator: >=

• Constant value: 10

The Compare to Constant2 block parameters are
modified as follows:

• Operator: <

• Constant value: 20

Compare to
Constant3

The Compare to Constant3 block send frames 20 to
30 to the third AVI file. The block parameters are
modified as follows:

• Operator: >=

• Constant value: 20

Compare to
Constant4

The Compare to Constant4 block stopa the
simulation when the video reaches frame 30. The
block parameters are modified as follows:

• Operator: ==

1-13

1 Input, Output, and Conversions

Block Parameter

• Constant value: 30

• Output data type mode: boolean

Using the Enabled Subsystem Block
Each To Multimedia File block gets inserted into one Enabled Subsystem
block, and connected to it’s input. You can do this, by double-clicking the
Enabled Subsystem blocks, then click-and-drag a To Multimedia File block
into it.

Each enabled subsystem should look similar to the subsystem shown in the
following figure.

Configuration Parameters
You can locate the Configuration Parameters by selecting Configuration
Parameters from the Simulation menu. For this example, the parameters
on the Solver pane, are set as follows:

• Solver pane, Type = Fixed-step

1-14

File Opening, Loading and Saving

• Solver pane, Solver = Discrete (no continuous states)

Combine Video and Audio Streams into a Single
Video File
In this example, you use the From Multimedia File blocks to import video and
audio streams into a Simulink model. You then write the audio and video to
a single file using the To Multimedia File block.

You can open the example model by typing

ex_combine_video_and_audio_streams

on the MATLAB command line.

1 Run your model. The model creates a multimedia file called output.avi in
your current folder.

2 Play the multimedia file using a media player. The original video file now
has an audio component to it.

Setting Up the Video Input Block
The From Multimedia File block imports a video file into the model. During
import, the Inherit sample time from file check box is deselected, which
enables the Desired sample time parameter. The other default parameters
are accepted.

The From Multimedia File block used for the input video file inherits its
sample time from the vipmen.avi file. For video signals, the sample time
equals the frame period. The frame period is defined as 1/(frame rate).
Because the input video frame rate is 30 frames per second (fps), the block
sets the frame period to 1/30 or 0.0333 seconds per frame.

Setting Up the Audio Input Block
The From Multimedia File1 block imports an audio file into the model.

The Samples per audio frame parameter is set to 735. This output audio
frame size is calculated by dividing the frequency of the audio signal (22050
samples per second) by the frame rate (approximately 30 frames per second).

1-15

1 Input, Output, and Conversions

You must adjust the audio signal frame period to match the frame period of
the video signal. The video frame period is 0.0333 seconds per frame. Because
the frame period is also defined as the frame size divided by frequency, you
can calculate the frame period of the audio signal by dividing the frame size of
the audio signal (735 samples per frame) by the frequency (22050 samples per
second) to get 0.0333 seconds per frame.

frame period = (frame size)/(frequency)
frame period = (735 samples per frame)/(22050 samples per second)
frame period = 0.0333 seconds per frame

Alternatively, you can verify that the frame period of the audio and video
signals is the same using a Simulink Probe block.

Setting Up the Output Block
The To Multimedia File block is used to output the audio and video signals
to a single multimedia file. The Video and audio option is selected for the
Write parameter and One multidimensional signal for the Image signal
parameter. The other default parameters are accepted.

Configuration Parameters
You can locate the Configuration Parameters by selecting
Simulation > Configuration Parameters. The parameters, on the Solver
pane, are set as follows:

• Stop time = 10

• Type = Fixed-step

• Solver = Discrete (no continuous states)

Import MATLAB Workspace Variables
You can import data from the MATLAB workspace using the Video From
Workspace block, which is created specifically for this task.

1-16

File Opening, Loading and Saving

Use the Signal parameter to specify the MATLAB workspace variable from
which to read. For more information about how to use this block, see the
Video From Workspace block reference page.

Import a Live Video Stream
Image Acquisition Toolbox provides functions for acquiring images and video
directly into MATLAB and Simulink from PC-compatible imaging hardware.
You can detect hardware automatically, configure hardware properties,
preview an acquisition, and acquire images and video.

1-17

1 Input, Output, and Conversions

See the live video processing demos to view demos that use the Image
Acquisition Toolbox together with Computer Vision System Toolbox blocks. To
see the full list of Computer Vision System Toolbox demos, type visiondemos
at the MATLAB command prompt.

1-18

Colorspace Formatting and Conversions

Colorspace Formatting and Conversions

In this section...

“Resample Image Chroma” on page 1-19

“Convert Intensity to Binary Images” on page 1-23

“Convert R’G’B’ to Intensity Images” on page 1-35

“Process Multidimensional Color Video Signals” on page 1-40

Resample Image Chroma
In this example, you use the Chroma Resampling block to downsample the Cb
and Cr components of an image. The Y’CbCr color space separates the luma
(Y’) component of an image from the chroma (Cb and Cr) components. Luma
and chroma, which are calculated using gamma corrected R, G, and B (R’, G’,
B’) signals, are different quantities than the CIE chrominance and luminance.
The human eye is more sensitive to changes in luma than to changes in
chroma. Therefore, you can reduce the bandwidth required for transmission
or storage of a signal by removing some of the color information. For this
reason, this color space is often used for digital encoding and transmission
applications.

You can open the example model by typing

ex_vision_resample_image_chroma

on the MATLAB command line.

1-19

1 Input, Output, and Conversions

1 Define an RGB image in the MATLAB workspace. To do so, at the
MATLAB command prompt, type:

I= imread('autumn.tif');

This command reads in an RGB image from a TIF file. The image I is a
206-by-345-by-3 array of 8-bit unsigned integer values. Each plane of this
array represents the red, green, or blue color values of the image.

2 To view the image this array represents, at the MATLAB command
prompt, type:

imshow(I)

3 Configure Simulink to display signal dimensions next to each signal line.
Select Format > Port/Signal Displays > Signal Dimensions.

4 Run your model. The recovered image appears in the Video Viewer
window. The Chroma Resampling block has downsampled the Cb and
Cr components of an image.

5 Examine the signal dimensions in your model. The Chroma Resampling
block downsamples the Cb and Cr components of the image from 206-by-346
matrices to 206-by-173 matrices. These matrices require less bandwidth
for transmission while still communicating the information necessary to
recover the image after it is transmitted.

Setting Block Parameters for This Example
The block parameters in this example are modified from default values as
follows:

1-20

Colorspace Formatting and Conversions

Block Parameter

Image from
Workspace

Import your image from the MATLAB workspace. Set
the Value parameter to I.

Image Pad Change dimensions of the input I array from
206-by-345-by-3 to 206-by-346-by-3. You are changing
these dimensions because the Chroma Resampling block
requires that the dimensions of the input be divisible by
2. Set the block parameters as follows:

• Method = Symmetric

• Add columns to = Right

• Number of added columns = 1

• Add row to = No padding

The Image Pad block adds one column to the right of
each plane of the array by repeating its border values.
This padding minimizes the effect of the pixels outside
the image on the processing of the image.

Note When you process video streams, be aware that it
is computationally expensive to pad every video frame.
You should change the dimensions of the video stream
before you process it with Computer Vision System
Toolbox blocks.

1-21

1 Input, Output, and Conversions

Block Parameter

Selector,
Selector1,
Selector2

Separate the individual color planes from the main
signal. Such separation simplifies the color space
conversion section of the model. Set the Selector block
parameters as follows:Selector1

• Number of input dimensions = 3

• Index 1 = Select all

• Index 2 = Select all

• Index 3 = Index vector (dialog) and Index = 1

Selector2

• Number of input dimensions = 3

• Index 1 = Select all

• Index 2 = Select all

• Index 3 = Index vector (dialog) and Index = 2

Selector2

• Number of input dimensions = 3

• Index 1 = Select all

• Index 2 = Select all

• Index 3 = Index vector (dialog) and Index = 3

Color Space
Conversion

Convert the input values from the R’G’B’ color space
to the Y’CbCr color space. The prime symbol indicates
a gamma corrected signal. Set the Image signal
parameter to Separate color signals.

1-22

Colorspace Formatting and Conversions

Block Parameter

Chroma
Resampling

Downsample the chroma components of the image from
the 4:4:4 format to the 4:2:2 format. Use the default
parameters. The dimensions of the output of the Chroma
Resampling block are smaller than the dimensions of
the input. Therefore, the output signal requires less
bandwidth for transmission.

Chroma
Resampling1

Upsample the chroma components of the image from the
4:2:2 format to the 4:4:4 format. Set the Resampling
parameter to 4:2:2 to 4:4:4.

Color Space
Conversion1

Convert the input values from the Y’CbCr color space
to the R’G’B’ color space. Set the block parameters as
follows:
• Conversion = Y'CbCr to R'G'B'

• Image signal = Separate color signals

Video Viewer Display the recovered image. Select File>Image signal
to set Image signal to Separate color signals.

Configuration Parameters
Open the Configuration dialog box by selectingConfiguration Parameters...
from the Simulation menu. Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

Convert Intensity to Binary Images

• “Thresholding Intensity Images Using Relational Operators” on page 1-24

• “Thresholding Intensity Images Using the Autothreshold Block” on page
1-29

Binary images contain Boolean pixel values that are either 0 or 1. Pixels
with the value 0 are displayed as black; pixels with the value 1 are displayed

1-23

1 Input, Output, and Conversions

as white. Intensity images contain pixel values that range between the
minimum and maximum values supported by their data type. Binary images
can contain only 0s and 1s, but they are not binary images unless their data
type is Boolean.

Thresholding Intensity Images Using Relational Operators
You can use the Relational Operator block to perform a thresholding operation
that converts your intensity image to a binary image. This example shows
you how to accomplish this task:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System
Toolbox > Sources

1

Video Viewer Computer Vision System
Toolbox > Sinks

2

Relational Operator Simulink > Logic and Bit
Operations

1

Constant Simulink > Sources 1

2 Position the blocks as shown in the following figure.

1-24

Colorspace Formatting and Conversions

3 Use the Image from File block to import your image. In this example the
image file is a 256-by-256 matrix of 8-bit unsigned integer values that
range from 0 to 255. Set the File name parameter to rice.png

4 Use the Video Viewer1 block to view the original intensity image. Accept
the default parameters.

5 Use the Constant block to define a threshold value for the Relational
Operator block. Since the pixel values range from 0 to 255, set the
Constant value parameter to 128. This value is image dependent.

6 Use the Relational Operator block to perform a thresholding operation
that converts your intensity image to a binary image. Set the Relational
Operator parameter to >. If the input to the Relational Operator block
is greater than 128, its output is a Boolean 1; otherwise, its output is
a Boolean 0.

1-25

1 Input, Output, and Conversions

7 Use the Video Viewer block to view the binary image. Accept the default
parameters.

8 Connect the blocks as shown in the following figure.

1-26

Colorspace Formatting and Conversions

9 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run your model.

The original intensity image appears in the Video Viewer1 window.

The binary image appears in the Video Viewer window.

1-27

1 Input, Output, and Conversions

Note A single threshold value was unable to effectively threshold this
image due to its uneven lighting. For information on how to address this
problem, see “Correct Nonuniform Illumination” on page 7-9.

You have used the Relational Operator block to convert an intensity image
to a binary image. For more information about this block, see the Relational
Operator block reference page in the Simulink documentation. For additional
information, see “Converting Between Image Types” in the Image Processing
Toolbox documentation.

1-28

Colorspace Formatting and Conversions

Thresholding Intensity Images Using the Autothreshold Block
In the previous topic, you used the Relational Operator block to convert an
intensity image into a binary image. In this topic, you use the Autothreshold
block to accomplish the same task. Use the Autothreshold block when lighting
conditions vary and the threshold needs to change for each video frame.

1 If the model you created in “Thresholding Intensity Images Using
Relational Operators” on page 1-24 is not open on your desktop, you can
open an equivalent model by typing

ex_thresholding

at the MATLAB command prompt.

2 Use the Image from File block to import your image. In this example the
image file is a 256-by-256 matrix of 8-bit unsigned integer values that
range from 0 to 255. Set the File name parameter to rice.png

3 Delete the Constant and the Relational Operator blocks in this model.

4 Add an Autothreshold block from the Conversions library of the Computer
Vision System Toolbox into your model.

1-29

1 Input, Output, and Conversions

5 Connect the blocks as shown in the following figure.

6 Use the Autothreshold block to perform a thresholding operation that
converts your intensity image to a binary image. Select the Output
threshold check box.

1-30

Colorspace Formatting and Conversions

The block outputs the calculated threshold value at the Th port.

7 Add a Display block from the Sinks library of the DSP System Toolbox
library. Connect the Display block to the Th output port of the
Authothreshold block.

Your model should look similar to the following figure:

1-31

1 Input, Output, and Conversions

8 Double-click the Image From File block. On the Data Types pane, set the
Output data type parameter to double.

9 If you have not already done so, set the configuration parameters. Open the
Configuration dialog box by selectingModel Configuration Parameters
from the Simulation menu. Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run the model.

The original intensity image appears in the Video Viewer1 window.

1-32

Colorspace Formatting and Conversions

The binary image appears in the Video Viewer window.

1-33

1 Input, Output, and Conversions

In the model window, the Display block shows the threshold value,
calculated by the Autothreshold block, that separated the rice grains from
the background.

1-34

Colorspace Formatting and Conversions

You have used the Autothreshold block to convert an intensity image to a
binary image. For more information about this block, see the Autothreshold
block reference page in the Computer Vision System Toolbox Reference. To
open a demo model that uses this block, type vipstaples at the MATLAB
command prompt.

Convert R’G’B’ to Intensity Images
The Color Space Conversion block enables you to convert color information
from the R’G’B’ color space to the Y’CbCr color space and from the Y’CbCr
color space to the R’G’B’ color space as specified by Recommendation ITU-R
BT.601-5. This block can also be used to convert from the R’G’B’ color space to
intensity. The prime notation indicates that the signals are gamma corrected.

Some image processing algorithms are customized for intensity images. If
you want to use one of these algorithms, you must first convert your image
to intensity. In this topic, you learn how to use the Color Space Conversion
block to accomplish this task. You can use this procedure to convert any
R’G’B’ image to an intensity image:

1-35

1 Input, Output, and Conversions

1 Define an R’G’B’ image in the MATLAB workspace. To read in an R’G’B’
image from a JPG file, at the MATLAB command prompt, type

I= imread('greens.jpg');

I is a 300-by-500-by-3 array of 8-bit unsigned integer values. Each plane of
this array represents the red, green, or blue color values of the image.

2 To view the image this matrix represents, at the MATLAB command
prompt, type

imshow(I)

3 Create a new Simulink model, and add to it the blocks shown in the
following table.

1-36

Colorspace Formatting and Conversions

Block Library Quantity

Image From
Workspace

Computer Vision System
Toolbox > Sources

1

Color Space
Conversion

Computer Vision System
Toolbox > Conversions

1

Video Viewer Computer Vision System
Toolbox > Sinks

1

4 Position the blocks as shown in the following figure.

Once you have assembled the blocks needed to convert a R’G’B’ image to an
intensity image, you are ready to set your block parameters. To do this,
double-click the blocks, modify the block parameter values, and click OK.

5 Use the Image from Workspace block to import your image from the
MATLAB workspace. Set theValue parameter to I.

6 Use the Color Space Conversion block to convert the input values from the
R’G’B’ color space to intensity. Set the Conversion parameter to R'G'B'
to intensity.

1-37

1 Input, Output, and Conversions

7 View the modified image using the Video Viewer block. Accept the default
parameters.

8 Connect the blocks so that your model is similar to the following figure.

9 Set the configuration parameters. Open the Configuration dialog box by
selectingModel Configuration Parameters from the Simulation menu.
Set the parameters as follows:

1-38

Colorspace Formatting and Conversions

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run your model.

The image displayed in the Video Viewer window is the intensity version
of the greens.jpg image.

In this topic, you used the Color Space Conversion block to convert color
information from the R’G’B’ color space to intensity. For more information on
this block, see the Color Space Conversion block reference page.

1-39

1 Input, Output, and Conversions

Process Multidimensional Color Video Signals
The Computer Vision System Toolbox software enables you to work with
color images and video signals as multidimensional arrays. For example,
the following model passes a color image from a source block to a sink block
using a 384-by-512-by-3 array.

1-40

Colorspace Formatting and Conversions

You can choose to process the image as a multidimensional array by setting
the Image signal parameter to One multidimensional signal in the Image
From File block dialog box.

1-41

1 Input, Output, and Conversions

The blocks that support multidimensional arrays meet at least one of the
following criteria:

• They have the Image signal parameter on their block mask.

• They have a note in their block reference pages that says, “This block
supports intensity and color images on its ports.”

• Their input and output ports are labeled “Image”.

You can also choose to work with the individual color planes of images or
video signals. For example, the following model passes a color image from a
source block to a sink block using three separate color planes.

1-42

Colorspace Formatting and Conversions

1-43

1 Input, Output, and Conversions

To process the individual color planes of an image or video signal, set the
Image signal parameter to Separate color signals in both the Image
From File and Video Viewer block dialog boxes.

1-44

Colorspace Formatting and Conversions

Note The ability to output separate color signals is a legacy option. It is
recommend that you use multidimensional signals to represent color data.

If you are working with a block that only outputs multidimensional arrays,
you can use the Selector block to separate the color planes. For an example of
this process, see “Measure an Angle Between Lines” on page 3-16. If you are

1-45

1 Input, Output, and Conversions

working with a block that only accepts multidimensional arrays, you can use
the Matrix Concatenation block to create a multidimensional array. For an
example of this process, see “Find the Histogram of an Image” on page 7-2.

1-46

Data Formats

Data Formats

In this section...

“Video Formats” on page 1-47

“Video Data Stored in Column-Major Format” on page 1-48

“Image Formats” on page 1-48

Video Formats
Video data is a series of images over time. Video in binary or intensity format
is a series of single images. Video in RGB format is a series of matrices
grouped into sets of three, where each matrix represents an R, G, or B plane.

Defining Intensity and Color
Video data is a series of images over time. Video in binary or intensity format
is a series of single images. Video in RGB format is a series of matrices
grouped into sets of three, where each matrix represents an R, G, or B plane.

The values in a binary, intensity, or RGB image can be different data types.
The data type of the image values determines which values correspond to
black and white as well as the absence or saturation of color. The following
table summarizes the interpretation of the upper and lower bound of each
data type. To view the data types of the signals at each port, from the Format
menu, point to Port/Signal Displays, and select Port Data Types.

Data Type
Black or Absence of
Color

White or Saturation
of Color

Fixed point Minimum data type
value

Maximum data type
value

Floating point 0 1

Note The Computer Vision System Toolbox software considers any data
type other than double-precision floating point and single-precision floating
point to be fixed point.

1-47

1 Input, Output, and Conversions

For example, for an intensity image whose image values are 8-bit unsigned
integers, 0 is black and 255 is white. For an intensity image whose image
values are double-precision floating point, 0 is black and 1 is white. For an
intensity image whose image values are 16-bit signed integers, -32768 is
black and 32767 is white.

For an RGB image whose image values are 8-bit unsigned integers, 0 0 0
is black, 255 255 255 is white, 255 0 0 is red, 0 255 0 is green, and 0 0 255
is blue. For an RGB image whose image values are double-precision
floating point, 0 0 0 is black, 1 1 1 is white, 1 0 0 is red, 0 1 0 is green,
and 0 0 1 is blue. For an RGB image whose image values are 16-bit
signed integers, -32768 -32768 -32768 is black, 32767 32767 32767 is
white, 32767 -32768 -32768 is red, -32768 32767 -32768 is green, and
-32768 -32768 32767 is blue.

Video Data Stored in Column-Major Format
The MATLAB technical computing software and Computer Vision System
Toolbox blocks use column-major data organization. The blocks’ data buffers
store data elements from the first column first, then data elements from the
second column second, and so on through the last column.

If you have imported an image or a video stream into the MATLAB workspace
using a function from the MATLAB environment or the Image Processing
Toolbox, the Computer Vision System Toolbox blocks will display this
image or video stream correctly. If you have written your own function or
code to import images into the MATLAB environment, you must take the
column-major convention into account.

Image Formats
In the Computer Vision System Toolbox software, images are real-valued
ordered sets of color or intensity data. The blocks interpret input matrices as
images, where each element of the matrix corresponds to a single pixel in the
displayed image. Images can be binary, intensity (grayscale), or RGB. This
section explains how to represent these types of images.

1-48

Data Formats

Binary Images
Binary images are represented by a Boolean matrix of 0s and 1s, which
correspond to black and white pixels, respectively.

For more information, see “Binary Images” in the Image Processing Toolbox™
documentation.

Intensity Images
Intensity images are represented by a matrix of intensity values. While
intensity images are not stored with colormaps, you can use a gray colormap
to display them.

For more information, see “Grayscale Images” in the Image Processing
Toolbox documentation.

RGB Images
RGB images are also known as a true-color images. With Computer Vision
System Toolbox blocks, these images are represented by an array, where the
first plane represents the red pixel intensities, the second plane represents
the green pixel intensities, and the third plane represents the blue pixel
intensities. In the Computer Vision System Toolbox software, you can
pass RGB images between blocks as three separate color planes or as one
multidimensional array.

For more information, see “Truecolor Images” in the Image Processing
Toolbox documentation.

1-49

1 Input, Output, and Conversions

1-50

2

Display and Graphics

• “Display” on page 2-2

• “Graphics” on page 2-24

2 Display and Graphics

Display

In this section...

“View Streaming Video in MATLAB using Video Player and Deployable
Video Player System Objects” on page 2-2

“Preview Video in MATLAB using MPlay Function” on page 2-2

“To Video Display Block” on page 2-4

“View Video in Simulink using MPlay Function as a Floating Scope” on
page 2-4

“MPlay” on page 2-7

View Streaming Video in MATLAB using Video Player
and Deployable Video Player System Objects

Video Player System Object
Use the video player System object when you require a simple video display
in MATLAB.

For more information about the video player object, see the
vision.VideoPlayer reference page.

Deployable Video Player System Object
Use the deployable video player object as a basic display viewer designed for
optimal performance. This block supports code generation for the Windows®

platform.

For more information about the Deployable Video Player block, see the
vision.DeployableVideoPlayer object reference page.

Preview Video in MATLAB using MPlay Function
The MPlay function enables you to view videos represented as variables in the
MATLAB workspace.

2-2

Display

You can open several instances of the MPlay function simultaneously to view
multiple video data sources at once. You can also dock these MPlay GUIs in
the MATLAB desktop. Use the figure arrangement buttons in the upper-right
corner of the Sinks window to control the placement of the docked GUIs.

The MPlay GUI enables you to view videos directly from files without having
to load all the video data into memory at once. The following procedure shows
you how to use the MPlay GUI to load and view a video one frame at a time:

1 On the MPlay GUI, click open file element,

2 Use the Connect to File dialog box to navigate to the multimedia file you
want to view in the MPlay window.

For example, navigate to
$matlabroot\toolbox\vision\visiondemos\vipmen.avi.

Click Open. The first frame of the video appears in the MPlay window.

2-3

2 Display and Graphics

Note The MPlay GUI supports AVI files that the mmreader supports.

3 Experiment with the MPlay GUI by using it to play and interact with the
video stream.

View Video in Simulink using the Video Viewer and
To Video Display Blocks

Video Viewer Block
Use the Video Viewer block when you require a wired-in video display with
simulation controls in your Simulink model. The Video Viewer block provides
simulation control buttons directly from the GUI. The block integrates play,
pause, and step features while running the model and also provides video
analysis tools such as pixel region viewer.

For more information about the Video Viewer block, see the Video Viewer
block reference page.

To Video Display Block
Use the To Video Display block in your Simulink model as a simple display
viewer designed for optimal performance. This block supports code generation
for the Windows platform.

For more information about the To Video Display block, see the To Video
Display block reference page.

View Video in Simulink using MPlay Function as a
Floating Scope
The MPlay GUI enables you to view video signals in Simulink models without
adding blocks to your model.

You can open several instances of the MPlay GUI simultaneously to view
multiple video data sources at once. You can also dock these MPlay GUIs in
the MATLAB desktop. Use the figure arrangement buttons in the upper-right
corner of the Sinks window to control the placement of the docked GUIs.

2-4

Display

Set Simulink simulation mode to Normal to use mplay . MPlay does not work
when you use “Accelerating Simulink Models” on page 8-8.

The following procedure shows you how to use MPlay to view a Simulink
signal:

1 Open a Simulink model. At the MATLAB command prompt, type

vipmplaytut

2 Open an MPlay GUI by typing mplay on the MATLAB command line.

3 Run the model.

4 Select the signal line you want to view. For example, select the bus signal
coming out of the Rotate block.

5 On the MPlay GUI, click Connect to Simulink Signal GUI element,

The video appears in the MPlay window.

2-5

2 Display and Graphics

6 Change to floating-scope mode by clicking the persistent connect GUI

element, button.

7 Experiment with selecting different signals and viewing them in the
MPlay window. You can also use multiple MPlay GUIs to display different
Simulink signals.

Note During code generation, the Simulink® Coder™ does not generate code
for the MPlay GUI.

2-6

Display

MPlay
The following figure shows the MPlay GUI containing an image sequence.

The following sections provide descriptions of the MPlay GUI toolbar buttons
and equivalent menu options.

2-7

2 Display and Graphics

Toolbar Buttons

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

File > New
MPlay

Ctrl+N Open a new MPlay GUI.

File > Print Ctrl+P Print the current scope
window. Printing is only
available when the scope
display is not changing. You
can enable printing by placing
the scope in snapshot mode,
or by pausing or stopping
model simulation.

To print the current scope
window to a figure rather
than sending it to your
printer, select File > Print
to figure.

File > Open Ctrl+O Connect to a video file.

File >
Import from
Workspace

Ctrl+I Connect to a variable from the
base MATLAB workspace.

File >
Connect to
Simulink
Signal

Connect to a Simulink signal.

2-8

Display

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

File > Export
to Image Tool

Ctrl+E Send the current video
frame to the Image Tool.
For more information, see
“Using the Image Tool to
Explore Images” in the
Image Processing Toolbox
documentation.
The Image Tool only knows
the frame is an intensity
image if the colormap of
the frame is grayscale
(gray(256)). Otherwise, the
Image Tool assumes that the
frame is an indexed image
and disables the Adjust
Contrast button.

Tools > Video
Information

V View information about the
video data source.

Tools > Pixel
Region

N/A Open the Pixel Region
tool. For more information
about this tool, see the
Image Processing Toolbox
documentation.

Tools > Zoom
In

N/A Zoom in on the video display.

Tools > Zoom
Out

N/A Zoom out of the video display.

Tools > Pan N/A Move the image displayed in
the GUI.

2-9

2 Display and Graphics

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Tools >
Maintain Fit
to Window

N/A Scale video to fit GUI size
automatically. Toggle the
button on or off.

N/A N/A Enlarge or shrink the video
display. This option is
available if you do not select
theMaintain Fit toWindow
button.

Playback Toolbar — Workspace and File Sources

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Playback >
Go to First

F, Home Go to the first frame of the
video.

Playback >
Rewind

Up arrow Jump back ten frames.

Playback >
Step Back

Left arrow, Page
Up

Step back one frame.

Playback >
Stop

S Stop the video.

Playback >
Play

P, Space bar Play the video.

Playback >
Pause

P, Space bar Pause the video. This button
appears only when the video
is playing.

Playback
> Step
Forward

Right arrow, Page
Down

Step forward one frame.

2-10

Display

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Playback >
Fast Forward

Down arrow Jump forward ten frames.

Playback >
Go to Last

L, End Go to the last frame of the
video.

Playback >
Jump to

J Jump to a specific frame.

Playback >
Playback
Modes >
Repeat

R Repeated video playback.

Playback >
Playback
Modes >
Forward play

A Play the video forward.

Playback >
Playback
Modes >
Backwardplay

A Play the video backward.

Playback >
Playback
Modes >
AutoReverse
play

A Play the video forward and
backward.

2-11

2 Display and Graphics

Playback Toolbar — Simulink Sources

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Simulation >
Stop

S Stop the video. This button
also controls the Simulink
model.

Simulation >
Start

P, Space bar Play the video. This button
also controls the Simulink
model.

Simulation >
Pause

P, Space bar Pause the video. This button
also controls the Simulink
model and appears only when
the video is playing.

Simulation
> Step
Forward

Right arrow, Page
Down

Step forward one frame.
This button also controls the
Simulink model.

Simulation
> Simulink
Snapshot

N/A Click this button to freeze the
display in the MPlay window.

View >
Highlight
Simulink
Signal

Ctrl+L In the model window,
highlight the Simulink
signal the MPlay GUI is
displaying.

Simulation
> Floating
Signal
Connection
(not selected)

N/A Indicates persistent Simulink
connection. In this mode, the
MPlay GUI always associates
with the Simulink signal you
selected before you clicked
the Connect to Simulink
Signal button.

Simulation
> Floating
Signal

N/A Indicates floating Simulink
connection. In this mode, you
can click different signals in

2-12

Display

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Connection
(selected)

the model, and the MPlay
GUI displays them. You can
use only one MPlay GUI in
floating-scope mode at a time.

Configuration

The MPlay Configuration dialog box enables you to change the behavior and
appearance of the GUI as well as the behavior of the playback shortcut keys.

• To open the Configuration dialog box, select File > Configuration
Set > Edit.

• To save the configuration settings for future use, select
File > Configuration Set > Save as.

Note By default, the MPlay GUI uses the configuration settings from the
file mplay.cfg. Create a backup copy of the file to store your configuration
settings.

• To load a preexisting configuration set, select File > Configuration
Set > Load.

Configuration Core Pane

The Core pane controls the graphic user interface (GUI) general and source
settings.

2-13

2 Display and Graphics

General UI
Click General UI, and then select the Options button to open the General
UI Options dialog box.

If you select the Display the full source path in the title bar check box,
the full Simulink path appears in the title bar. Otherwise, the title bar
displays a shortened name.

Use the Message log opens parameter to control when the Message log
window opens. You can use this window to debug issues with video playback.
Your choices are for any new messages, for warn/fail messages, only
for fail messages, or manually.

Source UI
Click Source UI, and then click the Options button to open the Source UI
Options dialog box.

2-14

Display

If you select the Keyboard commands respect playback modes check
box, the keyboard shortcut keys behave in response to the playback mode
you selected.

Using the Keyboard commands respect playback modes

Open and play a video using MPlay.

1 Select the Keyboard commands respect playback modes check box.

2 Select the Backward playback button.

• Using the right keyboard arrow key moves the video backward, and
using the left keyboard arrow key moves the video forward.

• With MPlay set to play backwards, the keyboard “forward” performs
“forward with the direction the video is playing”.

To disconnect the keyboard behavior from the MPlay playback settings, clear
the check box.

Use the Recently used sources list parameter to control the number of
sources you see in the File menu.

2-15

2 Display and Graphics

Configuration Sources Pane

The Sources pane contains the GUI options that relate to connecting to
different sources. Select the Enabled check box next to each source type to
specify to which type of source you want to connect the GUI.

• Click File, and then click the Options button to open the Sources:File
Options dialog box.

Use the Default open file path parameter to control the folder that is
displayed in the Connect to File dialog box. The Connect to File dialog
box becomes available when you select File > Open.

• Click Simulink, and then click the Options button to open the
Sources:Simulink Options dialog box.

2-16

Display

You can have the Simulink model associated with an MPlay GUI to open
with MPlay. To do so, select the Load Simulink model if not open check
box.

Select Signal lines only to sync the video display only when you select
a signal line. If you select a block the video display will not be affected.
Select Signal lines or blocks to sync the video display to the signal line or
block you select. The default is Signal lines only.

Configuration Visuals Pane

The Visuals pane contains the name of the visual type and its description.

2-17

2 Display and Graphics

Configuration Tools Pane

The Tools pane contains the tools that are available on the MPlay GUI. Select
the Enabled check box next to the tool name to specify which tools to include
on the GUI.

Click Image Tool, and then click the Options button to open the Image
Tool Options dialog box.

Select the Open new Image Tool window for export check box if you want
to open a new Image Tool for each exported frame.

Pixel Region
Select the Pixel Region check box to display and enable the pixel region GUI
button. For more information on working with pixel regions, see Getting
Information about the Pixels in an Image.

2-18

Display

Image Navigation Tools
Select the Image Navigation Tools check box to enable the pan-and-zoom
GUI button.

Instrumentation Set
Select the Instrumentation Set check box to enable the option to load and
save viewer settings. The option appears in the File menu.

Video Information

The Video Information dialog box lets you view basic information about the
video. To open this dialog box, select Tools > Video Information or click

the information button .

Color Map for Intensity Video

The Colormap dialog box lets you change the colormap of an intensity video.
You cannot access the parameters on this dialog box when the GUI displays
an RGB video signal. To open this dialog box for an intensity signal, select
Tools > Colormap or press C.

2-19

2 Display and Graphics

Use the Colormap parameter to specify the colormap to apply to the intensity
video.

Sometimes, the pixel values do not use the entire data type range. In such
cases, you can select the Specify range of displayed pixel values check
box. You can then enter the range for your data. The dialog box automatically
displays the range based on the data type of the pixel values.

Frame Rate

The Frame Rate dialog box displays the frame rate of the source. It also lets
you change the rate at which the MPlay GUI plays the video and displays the
actual playback rate.

Note This dialog box becomes available when you use the MPlay GUI to
view a video signal.

The playback rate is the number of frames the GUI processes per second. You
can use the Desired playback rate parameter to decrease or increase the
playback rate. To open this dialog box, select Playback > Frame Rate or
press T.

2-20

Display

To increase the playback rate when system hardware cannot keep pace
with the desired rate, select the Allow frame drop to achieve desired
playback rate check box. This parameter enables the MPlay GUI to achieve
the playback rate by dropping video frames. Dropped video frames sometimes
cause lower quality playback.

You can refine further the quality of playback versus hardware burden, by
controlling the number of frames to drop per frame or frames displayed.
For example, suppose you set the Desired playback rate to 80 frames/sec.
One way to achieve the desired playback rate is to set the Playback schedule

2-21

2 Display and Graphics

to Show 1 frame, Drop 3 frames. Change this playback schedule, by
setting the refresh rates (which is how often the GUI updates the screen), to:

Maximum refresh rate: 21 frames/sec
Minimum refresh rate: 20 frames/sec

MPlay can achieve the desired playback rate (in this case, 80 frames/sec)
by using these parameter settings.

In general, the relationship between the Frame Drop parameters is:

Desired rate refresh rate
show frames drop frames

show fram
_ _ *

_ _
_

= +
ees

In this case, the refresh_rate includes a more accurate calculation based on
both the minimum and maximum refresh rates.

Use the Minimum refresh rate and Maximum refresh rate parameters
to adjust the playback schedule of video display. Use these parameters in
the following way:

• Increase the Minimum refresh rate parameter to achieve smoother
playback.

• Decrease the Maximum refresh rate parameter to reduce the demand
on system hardware.

Saving the Settings of Multiple MPlay GUIs

The MPlay GUI enables you to save and load the settings of multiple GUI
instances. You only have to configure the MPlay GUIs associated with your
model once.

To save the GUI settings:

• Select File > Instrumentation Sets > Save Set

To open the preconfigured MPlay GUIs:

• Select File > Instrumentation Sets > Load Set

2-22

Display

You can save instrument sets for instances of MPlay connected to a source.
If you attempt to save an instrument set for an MPlay instance that is not
connected to a source, the Message Log displays a warning.

Message Log

The Message Log dialog box provides a system level record of configurations
and extensions used. You can filter what messages to display by Type and
Category, view the records, and display record details.

• The Type parameter allows you to select either All, Info, Warn, or Fail
message logs.

• The Category parameter allows you to select either Configuration or
Extension message summaries.

• The Configuration message indicates a new configuration file loaded.

• The Extension message indicates a registered component. For example,
a Simulink message, indicating a registered component, available for
configuration.

Status Bar

Along the bottom of the MPlay viewer is the status bar. It displays
information, such as video status, Type of video playing (I or RGB), Frame size,
Percentage of frame rate, Frame rate, and Current frame: Total frames.

Note A minus sign (-) for Current frame indicates reverse video playback.

2-23

2 Display and Graphics

Graphics

In this section...

“Abandoned Object Detection” on page 2-24

“Annotate Video Files with Frame Numbers” on page 2-30

Abandoned Object Detection
This example tracks objects at a train station and determines which ones
remain stationary. Abandoned objects in public areas concern authorities
since they might pose a security risk. Algorithms, such as the one used in this
example, can be used to assist security officers monitoring live surveillance
video by directing their attention to a potential area of interest.

This example illustrates how to use the BlobAnalysis System object to identify
objects and track them. The example implements this algorithm using the
following steps:

• Extract a region of interest (ROI), thus eliminating video areas that are
unlikely to contain abandoned objects.

• Perform video segmentation using background subtraction.

• Calculate object statistics using the blob analysis System object.

• Track objects based on their area and centroid statistics.

• Visualize the results.

Initialize Required Variables and System Objects

Use these next sections of code to initialize the required variables and System
objects.

Rectangular ROI [x y width height], where [x y] is the uppef left corner of
the ROI

roi = [100 80 360 240];
% Maximum number of objects to track
maxNumObj = 200;

2-24

Graphics

% Number of frames that an object must remain stationary before an alarm
% raised
alarmCount = 45;
% Maximum number of frames that an abandoned object can be hidden before
% is no longer tracked
maxConsecutiveMiss = 4;
areaChangeFraction = 13; % Maximum allowable change in object area in
centroidChangeFraction = 18; % Maximum allowable change in object centroi
% Minimum ratio between the number of frames in which an object is detect
% and the total number of frames, for that object to be tracked.
minPersistenceRatio = 0.7;
% Offsets for drawing bounding boxes in original input video
PtsOffset = int32(repmat([roi(1), roi(2), 0, 0],[maxNumObj 1]));

Create a VideoFileReader System object to read video from a file.

hVideoSrc = vision.VideoFileReader;
hVideoSrc.Filename = 'viptrain.avi';
hVideoSrc.VideoOutputDataType = 'single';

Create a ColorSpaceConverter System object to convert the RGB image to
Y’CbCr format.

hColorConv = vision.ColorSpaceConverter('Conversion', 'RGB to YCbCr');

Create an Autothresholder System object to convert an intensity image to
a binary image.

hAutothreshold = vision.Autothresholder('ThresholdScaleFactor', 1.3);

Create a MorphologicalClose System object to fill in small gaps in the detected
objects.

hClosing = vision.MorphologicalClose('Neighborhood', strel('square',5));

Create a BlobAnalysis System object to find the area, centroid, and bounding
box of the objects in the video.

hBlob = vision.BlobAnalysis('MaximumCount', maxNumObj, 'ExcludeBorderBlob
hBlob.MinimumBlobAreaSource = 'Property';
hBlob.MinimumBlobArea = 100;

2-25

2 Display and Graphics

hBlob.MaximumBlobAreaSource = 'Property';
hBlob.MaximumBlobArea = 2500;

Create a ShapeInserter System object to draw rectangles around the
abandoned objects.

hDrawRectangles1 = vision.ShapeInserter('Fill',true, 'FillColor', 'Custom
'CustomFillColor', [1 0 0], 'Opacity', 0.5);

Create a TextInserter System object to display the number of objects in the
video.

hDisplayCount = vision.TextInserter('Text', '%4d', 'Color', [1 1 1]);

Create a ShapeInserter System object to draw rectangles around all the
detected objects in the video.

hDrawRectangles2 = vision.ShapeInserter('BorderColor', 'Custom', ...
'CustomBorderColor', [0 1 0]);

Create a ShapeInserter System object to draw a rectangle around the region
of interest.

hDrawBBox = vision.ShapeInserter('BorderColor', 'Custom', ...
'CustomBorderColor', [1 1 0]);

Create a ShapeInserter System object to draw rectangles around all the
identified objects in the segmented video.

hDrawRectangles3 = vision.ShapeInserter('BorderColor', 'Custom', ...
'CustomBorderColor', [0 1 0]);

Create System objects to display results.

pos = [10 300 roi(3)+25 roi(4)+25];
hAbandonedObjects = vision.VideoPlayer('Name', 'Abandoned Objects', 'Posi
pos(1) = 46+roi(3); % move the next viewer to the right
hAllObjects = vision.VideoPlayer('Name', 'All Objects', 'Position', pos);
pos = [80+2*roi(3) 300 roi(3)-roi(1)+25 roi(4)-roi(2)+25];
hThresholdDisplay = vision.VideoPlayer('Name', 'Threshold', 'Position', p

2-26

Graphics

Video Processing Loop

Create a processing loop to perform abandoned object detection on the input
video. This loop uses the System objects you instantiated above.

firsttime = true;
while ~isDone(hVideoSrc)

Im = step(hVideoSrc);

% Select the region of interest from the original video
OutIm = Im(roi(2):end, roi(1):end, :);

YCbCr = step(hColorConv, OutIm);
CbCr = complex(YCbCr(:,:,2), YCbCr(:,:,3));

% Store the first video frame as the background
if firsttime

firsttime = false;
BkgY = YCbCr(:,:,1);
BkgCbCr = CbCr;

end
SegY = step(hAutothreshold, abs(YCbCr(:,:,1)-BkgY));
SegCbCr = abs(CbCr-BkgCbCr) > 0.05;

% Fill in small gaps in the detected objects
Segmented = step(hClosing, SegY | SegCbCr);

% Perform blob analysis
[Area, Centroid, BBox] = step(hBlob, Segmented);

% Call the helper function that tracks the identified objects and
% returns the bounding boxes and the number of the abandoned objects
[OutCount, OutBBox] = videoobjtracker(Area, Centroid, BBox, maxNumObj

areaChangeFraction, centroidChangeFraction, maxConsecutiveMiss, .
minPersistenceRatio, alarmCount);

% Display the abandoned object detection results
Imr = step(hDrawRectangles1, Im, OutBBox+PtsOffset);
Imr(1:15,1:30,:) = 0;
Imr = step(hDisplayCount, Imr, OutCount);

2-27

2 Display and Graphics

step(hAbandonedObjects, Imr);

BlobCount = size(BBox,1);

BBoxOffset = BBox + int32(repmat([roi(1) roi(2) 0 0],[BlobCount 1]))
Imr = step(hDrawRectangles2, Im, BBoxOffset);

% Display all the detected objects
Imr(1:15,1:30,:) = 0;
Imr = step(hDisplayCount, Imr, OutCount);
Imr = step(hDrawBBox, Imr, roi);
step(hAllObjects, Imr);

% Display the segmented video
SegBBox = PtsOffset;
SegBBox(1:BlobCount,:) = BBox;
SegIm = step(hDrawRectangles3, repmat(Segmented,[1 1 3]), SegBBox);
step(hThresholdDisplay, SegIm);

end

release(hVideoSrc);

2-28

Graphics

The Abandoned Objects window highlights the abandoned objects with a red
box. The All Objects window marks the region of interest (ROI) with a
yellow box and all detected objects with green boxes. The Threshold window
shows the result of the background subtraction in the ROI.

2-29

2 Display and Graphics

Annotate Video Files with Frame Numbers
You can use the vision.TextInserter System object in MATLAB, or
theInsert Text block in a Simulink model, to overlay text on video streams.
In this Simulink model example, you add a running count of the number of
video frames to a video using the Insert Text block. The model contains the
From Multimedia File block to import the video into the Simulink model, a
Frame Counter block to count the number of frames in the input video, and
two Video Viewer blocks to view the original and annotated videos.

You can open the example model by typing

ex_vision_annotate_video_files_with_frame_numbers

on the MATLAB command line.

1 Run your model.

2 The model displays the original and annotated videos.

2-30

Graphics

Color Formatting
For this example, the color format for the video was set to Intensity, and
therefore the color value for the text was set to a scaled value. If instead, you
set the color format to RGB, then the text value must satisfy this format, and
requires a 3-element vector.

Inserting Text
Use the Insert Text block to annotate the video stream with a running frame
count. Set the block parameters as follows:

• Main pane, Text = ['Frame count' sprintf('\n') 'Source frame:
%d']

• Main pane, Color value = 1

• Main pane, Location [x y] = [2 85]

• Font pane, Font face = LucindaTypewriterRegular

By setting the Text parameter to ['Frame count' sprintf('\n') 'Source
frame: %d'], you are asking the block to print Frame count on one line
and the Source frame: on a new line. Because you specified %d, an ANSI C
printf-style format specification, the Variables port appears on the block. The
block takes the port input in decimal form and substitutes this input for the
%d in the string. You used the Location [x y] parameter to specify where to
print the text. In this case, the location is 85 rows down and 2 columns over
from the top-left corner of the image.

Configuration Parameters
Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set the
parameters as follows:

• Solver pane, Stop time = inf

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

2-31

2 Display and Graphics

2-32

3

Registration and Stereo
Vision

• “Feature Detection, Extraction, and Matching” on page 3-2

• “Image Registration” on page 3-28

• “Stereo Vision” on page 3-31

3 Registration and Stereo Vision

Feature Detection, Extraction, and Matching

In this section...

“Detect Edges in Images” on page 3-2

“Detect Lines in Images” on page 3-10

“Detect Corner Features in an Image ” on page 3-14

“Find Possible Point Matches Between Two Images” on page 3-14

“Measure an Angle Between Lines” on page 3-16

Detect Edges in Images
You can use the Edge Detection block to find the edges of objects in an image.
This block finds the pixel locations where the magnitude of the gradient of
intensity is larger than a threshold value. These locations typically occur at
the boundaries of objects. In this section, you use the Edge Detection block to
find the edges of rice grains in an intensity image:

1 Create a Simulink model, and add the blocks shown in the following
table. Or, start with the model containing the blocks by typing
ex_finding_edges_blocks at the MATLAB command line.

Block Library Quantity

Image From File Computer Vision System Toolbox >
Sources

1

Edge Detection Computer Vision System Toolbox >
Analysis & Enhancement

1

Minimum Computer Vision System Toolbox >
Statistics

2

Maximum Computer Vision System Toolbox >
Statistics

2

Video Viewer Computer Vision System Toolbox >
Sinks

4

3-2

Feature Detection, Extraction, and Matching

Block Library Quantity

Subtract Simulink > Math Operations 2

Divide Simulink > Math Operations 2

2 Place the blocks so that your model resembles the following figure.

You are now ready to set your block parameters by double-clicking the
blocks, modifying the block parameter values, and clicking OK.

3 Use the Image From File block to import your image. Set the parameters
as follows:

• File name to rice.png.

• Output data type to single.

4 Use the Edge Detection block to find the edges in the image. Set the block
parameters as follows:

• Output type = Binary image and gradient components

• Select the Edge thinning check box.

3-3

3 Registration and Stereo Vision

The Edge Detection block convolves the input matrix with the Sobel kernel.
This calculates the gradient components of the image that correspond
to the horizontal and vertical edge responses. The block outputs these
components at the Gh and Gv ports, respectively. Then the block performs
a thresholding operation on the gradient components to find the binary
image. The binary image is a matrix filled with 1s and 0s. The nonzero
elements of this matrix correspond to the edge pixels and the zero elements
correspond to the background pixels. The block outputs the binary image
at the Edge port.

5 View the original image using the Video Viewer block and the binary
image using the Video Viewer1 block. Accept the default parameters for
both viewers.

6 The matrix values at the Gv and Gh output ports from of the Edge
Detection block are double-precision floating-point. These matrix values

3-4

Feature Detection, Extraction, and Matching

need to be scaled between 0 and 1 in order to display them using the Video
Viewer blocks. This is done with the Statistics and Math Operation blocks.

7 Use the Minimum blocks to find the minimum value of Gv and Gh matrices.
Set the Mode parameters to Value for both of these blocks.

8 Use the Subtract blocks to subtract the minimum values from each element
of the Gv and Gh matrices. This process ensures that the minimum value
of these matrices is 0. Accept the default parameters.

9 Use the Maximum blocks to find the maximum value of the new Gv and Gh
matrices. Set theMode parameters to Value for both of these blocks.

10 Use the Divide blocks to divide each element of the Gv and Gh matrices
by their maximum value. This normalization process ensures that these
matrices range between 0 and 1.Accept the default parameters.

11 View the gradient components of the image using the Video Viewer2 and
Video Viewer3 blocks. Accept the default parameters.

12 Connect the blocks as shown in the following figure, or type
ex_finding_edges_connected_blocks at the MATLAB command line
using a connected model.

3-5

3 Registration and Stereo Vision

13 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

• Diagnostics pane, Automatic solver parameter selection: = none

14 Run your model.

The Video Viewer window displays the original image. The Video Viewer1
window displays the edges of the rice grains in white and the background
in black.

3-6

Feature Detection, Extraction, and Matching

The Video Viewer2 window displays the intensity image of the vertical
gradient components of the image. You can see that the vertical edges of
the rice grains are darker and more well defined than the horizontal edges.

3-7

3 Registration and Stereo Vision

The Video Viewer3 window displays the intensity image of the horizontal
gradient components of the image. In this image, the horizontal edges of
the rice grains are more well defined.

3-8

Feature Detection, Extraction, and Matching

15 Double-click the Edge Detection block and clear the Edge thinning check
box.

16 Run your model again.

Your model runs faster because the Edge Detection block is more efficient
when you clear the Edge thinning check box. However, the edges of rice
grains in the Video Viewer window are wider.

3-9

3 Registration and Stereo Vision

You have now used the Edge Detection block to find the object boundaries in
an image. For more information on this block, see the Edge Detection block
reference page in the Computer Vision System Toolbox Reference.

Detect Lines in Images
Finding lines within images enables you to detect, measure, and recognize
objects. In this example, you use the Hough Transform, Find Local Maxima,
Edge Detectionand Hough Lines blocks to find the longest line in an image.

You can open the model for this example by typing

ex_vision_detect_lines_in_image

3-10

Feature Detection, Extraction, and Matching

at the MATLAB command line.

The Video Viewer blocks display the original image, the image with all edges
found, and the image with the longest line annotated.

The Edge Detection block finds the edges in the intensity image. This process
improves the efficiency of the Hough Lines block by reducing the image area
over which the block searches for lines. The block also converts the image to a
binary image, which is the required input for the Hough Transform block.

For additional examples of the techniques used in this section, see the
following list of demos. You can open these demos by typing the demo titles
at the MATLAB command prompt:

Demo MATLAB Simulink
model-based

Lane Departure
Warning System

videoldws vipldws

Rotation Correction videorotationcorrectionviphough

You can find all demos for the Computer Vision System Toolbox by typing
visiondemos at the MATLAB command line.

3-11

3 Registration and Stereo Vision

Setting Block Parameters
Block Setting

Hough Transform The Hough Transform block
computes the Hough matrix by
transforming the input image into
the rho-theta parameter space. The
block also outputs the rho and theta
values associated with the Hough
matrix. The parameters are set as
follows:

• Theta resolution (radians) =
pi/360

• Select the Output theta and rho
values check box.

Find Local Maxima The Find Local Maxima block finds
the location of the maximum value
in the Hough matrix. The block
parameters are set as follows:

• Maximum number of local
maxima = 1

• Input is Hough matrix
spanning full theta range

Selector The Selector blocks separate the
indices of the rho and theta values,
which the Find Local Maxima
block outputs at the Idx port. The
rho and theta values correspond
to the maximum value in the
Hough matrix. The Selector blocks
parameters are set as follows:

• Number of input dimensions:
1

• Index mode = One-based

3-12

Feature Detection, Extraction, and Matching

Block Setting

• Index Option = Index vector
(port)

• Input port size = 2

Variable Selector The Variable Selector blocks index
into the rho and theta vectors and
determine the rho and theta values
that correspond to the longest line in
the original image. The parameters
of the Variable Selector blocks are
set as follows:
• Select = Columns

• Index mode = One-based

Hough Lines The Hough Lines block determines
where the longest line intersects the
edges of the original image.
• Sine value computation
method = Trigonometric
function

Draw Shapes The Draw Shapes block draws a
white line over the longest line on
the original image. The coordinates
are set to superimpose a line on
the original image. The block
parameters are set as follows:
• Shape = Lines

• Border color = White

Configuration Parameters
Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set the
parameters as follows:

• Solver pane, Stop time = 0

3-13

3 Registration and Stereo Vision

• Solver pane, Type = Fixed-step

• Solver pane, Solver = discrete (no continuous states)

• Solver pane, Fixed-step size (fundamental sample time): = 0.2

Detect Corner Features in an Image
Stabilizing a video that was captured from a jittery or moving platform is an
important application in computer vision. One way to stabilize a video is to
track a salient feature in the image and use this as an anchor point to cancel
out all perturbations relative to it. This example uses corner detection around
salient image features.

You can find demos for the Computer Vision System Toolbox by typing
visiondemos at the MATLAB command line. You can also launch the Video
Stabilization Using Point Feature Matching demo model directly, by typing
videostabilize_pm on the MATLAB command line.

Find Possible Point Matches Between Two Images
Stabilizing a video that was captured from a jittery or moving platform is an
important application in computer vision. One way to stabilize a video is
to track a salient feature in the image and use this as an anchor point to
cancel out all perturbations relative to it. This procedure, however, must
be bootstrapped with knowledge of where such a salient feature lies in the
first video frame. In this example, we explore a method of video stabilization
that works without any such a priori knowledge. It instead automatically
searches for the "background plane" in a video sequence, and uses its observed
distortion to correct for camera motion.

3-14

Feature Detection, Extraction, and Matching

You can launch this example, Video Stabilization Using Point Feature
Matching directly, by typing videostabilize_pm on the MATLAB command
line.

Video mosaicking is the process of stitching video frames together to form a
comprehensive view of the scene. The resulting mosaic image is a compact
representation of the video data, which is often used in video compression
and surveillance applications. This example illustrates how to use the
CornerDetector, GeometricTransformEstimator, AlphaBlender, and the
GeometricTransformer System objects to create a mosaic image from a video
sequence. First, the example identifies the corners in the first reference frame
and second video frame. Then, it calculates the projective transformation
matrix that best describes the transformation between corner positions in
these frames. Finally, the demo overlays the second image onto the first
image. The example repeats this process to create a mosaic image of the
video scene.

3-15

3 Registration and Stereo Vision

You can launch this example, Video Mosaicking directly, by typing
videomosaicking on the MATLAB command line.

You can find demos for the Computer Vision System Toolbox by typing
visiondemos at the MATLAB command line.

Measure an Angle Between Lines
The Hough Transform, Find Local Maxima, and Hough Lines blocks enable
you to find lines in images. With the Draw Shapes block, you can annotate
images. In the following example, you use these capabilities to draw lines on
the edges of two beams and measure the angle between them.

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox >
Sources

1

Color Space
Conversion

Computer Vision System Toolbox >
Conversions

1

3-16

Feature Detection, Extraction, and Matching

Block Library Quantity

Edge Detection Computer Vision System Toolbox >
Analysis & Enhancement

1

Hough Transform Computer Vision System Toolbox >
Transforms

1

Find Local
Maxima

Computer Vision System Toolbox >
Statistics

1

Draw Shapes Computer Vision System Toolbox > Text
& Graphics

1

Video Viewer Computer Vision System Toolbox > Sinks 3

Hough Lines Computer Vision System Toolbox >
Transforms

1

Submatrix DSP System Toolbox > Math Functions
> Matrices and Linear Algebra > Matrix
Operations

4

Terminator Simulink > Sinks 1

Selector Simulink > Signal Routing 4

MATLAB
Function

Simulink > User-Defined Functions 1

Display Simulink > Sinks 1

2 Position the blocks as shown in the following figure.

3-17

3 Registration and Stereo Vision

3 Use the Image From File block to import an image into the Simulink model.
Set the parameters as follows:

• File name = gantrycrane.png

• Sample time = 1

4 Use the Color Space Conversion block to convert the RGB image into the
Y’CbCr color space. You perform this conversion to separate the luma
information from the color information. Accept the default parameters.

Note In this example, you segment the image using a thresholding
operation that performs best on the Cb channel of the Y’CbCr color space.

5 Use the Selector and Selector1 blocks to separate the Y’ (luminance) and
Cb (chrominance) components from the main signal.

The Selector block separates the Y’ component from the entire signal. Set
its block parameters as follows:

• Number of input dimensions = 3

• Index mode = One-based

3-18

Feature Detection, Extraction, and Matching

• 1

– Index Option = Select all

• 2

– Index Option = Select all

• 3

– Index Option = Index vector (dialog)

– Index = 1

The Selector1 block separates the Cb component from the entire signal.
Set its block parameters as follows:

• Number of input dimensions = 3

• Index mode = One-based

• 1

– Index Option = Select all

• 2

– Index Option = Select all

• 3

– Index Option = Index vector (dialog)

– Index = 2

6 Use the Submatrix and Submatrix1 blocks to crop the Y’ and Cb matrices
to a particular region of interest (ROI). This ROI contains two beams that
are at an angle to each other. Set the parameters as follows:

• Starting row = Index

• Starting row index = 66

• Ending row = Index

• Ending row index = 150

• Starting column = Index

• Starting column index = 325

3-19

3 Registration and Stereo Vision

• Ending column = Index

• Ending column index = 400

7 Use the Edge Detection block to find the edges in the Cb portion of the
image. This block outputs a binary image. Set the Threshold scale
factor parameter to 1.

8 Use the Hough Transform block to calculate the Hough matrix, which gives
you an indication of the presence of lines in an image. Select the Output
theta and rho values check box as shown in the following figure.

Note In step 11, you find the theta and rho values that correspond to the
peaks in the Hough matrix.

3-20

Feature Detection, Extraction, and Matching

9 Use the Find Local Maxima block to find the peak values in the Hough
matrix. These values represent potential lines in the input image. Set
the parameters as follows:

• Neighborhood size = [11 11]

• Input is Hough matrix spanning full theta range = selected

Because you are expecting two lines, leave the Maximum number of
local maxima (N) parameter set to 2, and connect the Count port to the
Terminator block.

3-21

3 Registration and Stereo Vision

10 Use the Submatrix2 block to find the indices that correspond to the theta
values of the two peak values in the Hough matrix. Set the parameters as
follows:

• Starting row = Index

• Starting row index = 2

• Ending row = Index

• Ending row index = 2

The Idx port of the Find Local Maxima block outputs a matrix whose second
row represents the One-based indices of the theta values that correspond
to the peaks in the Hough matrix. Now that you have these indices, you
can use a Selector block to extract the corresponding theta values from the
vector output of the Hough Transform block.

11 Use the Submatrix3 block to find the indices that correspond to the rho
values of the two peak values in the Hough matrix. Set the parameters as
follows:

• Ending row = Index

• Ending row index = 1

The Idx port of the Find Local Maxima block outputs a matrix whose first
row represents the One-based indices of the rho values that correspond to
the peaks in the Hough matrix. Now that you have these indices, you can
use a Selector block to extract the corresponding rho values from the vector
output of the Hough Transform block.

12 Use the Selector2 and Selector3 blocks to find the theta and rho values
that correspond to the peaks in the Hough matrix. These values, output
by the Hough Transform block, are located at the indices output by the
Submatrix2 and Submatrix3 blocks. Set both block parameters as follows:

• Index mode = One-based

• 1

– Index Option = Index vector (port)

• Input port size = -1

3-22

Feature Detection, Extraction, and Matching

You set the Index mode to One-based because the Find Local Maxima
block outputs One-based indices at the Idx port.

13 Use the Hough Lines block to find the Cartesian coordinates of lines that
are described by rho and theta pairs. Set the Sine value computation
method parameter to Trigonometric function.

14 Use the Draw Shapes block to draw the lines on the luminance portion of
the ROI. Set the parameters as follows:

• Shape = Lines

• Border color = White

15 Use the MATLAB Function block to calculate the angle between the two
lines. Copy and paste the following code into the block:

function angle = compute_angle(theta)

%Compute the angle value in degrees
angle = abs(theta(1)-theta(2))*180/pi;
%Always return an angle value less than 90 degrees
if (angle>90)

angle = 180-angle;
end

16 Use the Display block to view the angle between the two lines. Accept the
default parameters.

17 Use the Video Viewer blocks to view the original image, the ROI, and the
annotated ROI. Accept the default parameters.

18 Connect the blocks as shown in the following figure.

3-23

3 Registration and Stereo Vision

19 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

20 Run the model.

The Video Viewer window displays the original image.

3-24

Feature Detection, Extraction, and Matching

The Video Viewer1 window displays the ROI where two beams intersect.

3-25

3 Registration and Stereo Vision

The Video Viewer2 window displays the ROI that has been annotated with
two white lines.

3-26

Feature Detection, Extraction, and Matching

The Display block shows a value of 58, which is the angle in degrees
between the two lines on the annotated ROI.

You have now annotated an image with two lines and measured the angle
between them. For additional information, see the Hough Transform, Find
Local Maxima, Hough Lines, and Draw Shapes block reference pages.

3-27

3 Registration and Stereo Vision

Image Registration

In this section...

“Automatically Determine Geometric Transform for Image Registration”
on page 3-28

“Transform Images and Display Registration Results” on page 3-29

“Remove the Effect of Camera Motion from a Video Stream.” on page 3-30

Automatically Determine Geometric Transform for
Image Registration
Stabilizing a video that was captured from a jittery or moving platform is an
important application in computer vision. One way to stabilize a video is
to track a salient feature in the image and use this as an anchor point to
cancel out all perturbations relative to it. This procedure, however, must
be bootstrapped with knowledge of where such a salient feature lies in the
first video frame. In this example, we explore a method of video stabilization
that works without any such a priori knowledge. It instead automatically
searches for the "background plane" in a video sequence, and uses its observed
distortion to correct for camera motion.

3-28

Image Registration

This stabilization algorithm involves two steps. First, we determine the affine
image transformations between all neighboring frames of a video sequence
using a Random Sampling and Consensus (RANSAC) [1] procedure applied to
point correspondences between two images. Second, we warp the video frames
to achieve a stabilized video. We use System objects in the Computer Vision
System Toolbox™, both for the algorithm and for display.

You can launch this example, Video Stabilization Using Point Feature
Matching directly, by typing videostabilize_pm on the MATLAB command
line.

Transform Images and Display Registration Results
Rectification is the process of transforming stereo images, such that the
corresponding points have the same row coordinates in the two images. It is a
useful procedure in stereo vision, as the 2-D stereo correspondence problem is
reduced to a 1-D problem when rectified image pairs are used.

The Image Rectification demo automatically registers and rectifies stereo
images. This example detects corners in stereo images, matches the corners,
computes the fundamental matrix, and then rectifies the images.

You can find demos for the Computer Vision System Toolbox by typing
visiondemos at the MATLAB command line. You can also launch the Image

3-29

3 Registration and Stereo Vision

Rectification demo model directly, by typing videorectification on the
MATLAB command line.

Remove the Effect of Camera Motion from a Video
Stream.
The video stabilization demo tracks a license plate of a vehicle while reducing
the effect of camera motion from a video stream.

In the first video frame, the model defines the target to track. In this case, it
is the back of a car and the license plate. It also establishes a dynamic search
region, where the last known target location determines the position.

You can find demos for the Computer Vision System Toolbox by typing
visiondemos at the MATLAB command line. You can launch the Video
Stabilization model directly by typing vipstabilize on the MATLAB
command line.

3-30

Stereo Vision

Stereo Vision

In this section...

“Compute Disparity Depth Map” on page 3-31

“Find Fundamental Matrix Describing Epipolar Geometry” on page 3-32

“Rectify Stereo Images” on page 3-34

Compute Disparity Depth Map
Stereo vision is the process of recovering depth from camera images by
comparing two or more views of the same scene. Simple, binocular stereo uses
only two images, typically taken with parallel cameras that were separated
by a horizontal distance known as the "baseline." The output of the stereo
computation is a disparity map (which is translatable to a range image) which
tells how far each point in the physical scene was from the camera.

In this example, we use MATLAB® and the Computer Vision System
Toolbox™ to compute the depth map between two rectified stereo images.

3-31

3 Registration and Stereo Vision

You can find demos for the Computer Vision System Toolbox by typing
visiondemos at the MATLAB command line. You can also launch the
Stereo Vision demo model directly, by typing videostereo on the MATLAB
command line.

Find Fundamental Matrix Describing Epipolar
Geometry
In computer vision, the fundamental matrix is a 3×3 matrix which relates
corresponding points in stereo images. When two cameras view a 3D scene
from two distinct positions, there are a number of geometric relations
between the 3D points and their projections onto the 2D images that lead to
constraints between the image points. Two images of the same scene are
related by epipolar geometry.

3-32

Stereo Vision

This example takes two stereo images, computes the fundamental matrix from
their corresponding points, displays the original stereo images, corresponding
points, and epipolar lines for this and for the rectified images.

Load stereo images and cnovert them to double precision:

% Load the stereo images and convert them to double precision.
I1 = imread('yellowstone_left.png');
I2 = imread('yellowstone_right.png');

% Load the points which are already matched.
load yellowstone_matched_points;

% Compute the fundamental matrix from the corresponding points.
f= estimateFundamentalMatrix(matched_points1, matched_points2,...

'Method', 'Norm8Point');

% Display the original stereo images, corresponding points, and
% epipolar lines.
cvexShowStereoImages('Original image 1', 'Original image 2', ...

I1, I2, matched_points1, matched_points2, f);

You can find demos for the Computer Vision System Toolbox by typing
visiondemos at the MATLAB command line.

3-33

3 Registration and Stereo Vision

Rectify Stereo Images
Rectification is the process of transforming stereo images, such that the
corresponding points have the same row coordinates in the two images. It is a
useful procedure in stereo vision, as the 2-D stereo correspondence problem is
reduced to a 1-D problem when rectified image pairs are used.

The Image Rectification demo automatically registers and rectifies stereo
images. This example detects corners in stereo images, matches the corners,
computes the fundamental matrix, and then rectifies the images.

You can find demos for the Computer Vision System Toolbox by typing
visiondemos at the MATLAB command line. You can also launch the Image
Rectification demo model directly, by typing videorectification on the
MATLAB command line.

3-34

4

Motion Analysis and
Tracking

• “Detect and Track Moving Objects Using Gaussian Mixture Models” on
page 4-2

• “Video Mosaicking” on page 4-3

• “Track an Object Using Correlation” on page 4-4

• “Create a Panoramic Scene” on page 4-12

4 Motion Analysis and Tracking

Detect and Track Moving Objects Using Gaussian Mixture
Models

This example illustrates how to detect cars in a video sequence using
foreground detection based on Gaussian mixture models (GMMs). After
foreground detection, the example processes the binary foreground images
using blob analysis. Finally, bounding boxes are drawn around the detected
cars.

You can find demos for the Computer Vision System Toolbox by typing
visiondemos at the MATLAB command line. You can also launch the
Tracking Cars Using Gaussian Mixture Models demo model directly, by
typing videotrafficgmm at the MATLAB command line.

4-2

Video Mosaicking

Video Mosaicking
Video mosaicking is the process of stitching video frames together to form a
comprehensive view of the scene. The resulting mosaic image is a compact
representation of the video data, which is often used in video compression
and surveillance applications.

You can find demos for the Computer Vision System Toolbox by typing
visiondemos at the MATLAB command line. You can also launch the Video
Mosaicking demo model directly, by typing videomosaicking at the MATLAB
command line.

4-3

4 Motion Analysis and Tracking

Track an Object Using Correlation
In this example, you use the 2-D Correlation, 2-D Maximum, and Draw
Shapes blocks to find and indicate the location of a sculpture in each video
frame:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Read Binary File Computer Vision System
Toolbox > Sources

1

Image Data Type
Conversion

Computer Vision System
Toolbox > Conversions

1

Image From File Computer Vision System
Toolbox > Sources

1

2-D Correlation Computer Vision System
Toolbox > Statistics

1

2-D Maximum Computer Vision System
Toolbox > Statistics

1

Draw Shapes Computer Vision System
Toolbox > Text & Graphics

1

Video Viewer Computer Vision System
Toolbox > Sinks

1

Data Type Conversion Simulink > Signal Attributes 1

Constant Simulink > Sources 1

Mux Simulink > Signal Routing 1

2 Position the blocks as shown in the following figure.

4-4

Track an Object Using Correlation

You are now ready to set your block parameters by double-clicking the
blocks, modifying the block parameter values, and clicking OK.

3 Use the Read Binary File block to import a binary file into the model. Set
the block parameters as follows:

• File name = cat_video.bin

• Four character code = GREY

• Number of times to play file = inf

• Sample time = 1/30

4-5

4 Motion Analysis and Tracking

4 Use the Image Data Type Conversion block to convert the data type of the
video to single-precision floating point. Accept the default parameter.

5 Use the Image From File block to import the image of the cat sculpture,
which is the object you want to track. Set the block parameters as follows:

• Main pane, File name = cat_target.png

• Data Types pane, Output data type = single

6 Use the 2-D Correlation block to determine the portion of each video frame
that best matches the image of the cat sculpture. Set the block parameters
as follows:

• Output size = Valid

• Select the Normalized output check box.

4-6

Track an Object Using Correlation

Because you chose Valid for the Output size parameter, the block
outputs only those parts of the correlation that are computed without the
zero-padded edges of any input.

7 Use the 2-D Maximum block to find the index of the maximum value in
each input matrix. Set the Mode parameter to Index.

The block outputs the zero-based location of the maximum value as a
two-element vector of 32-bit unsigned integers at the Idx port.

8 Use the Data Type Conversion block to change the index values from 32-bit
unsigned integers to single-precision floating-point values. Set the Output
data type parameter to single.

4-7

4 Motion Analysis and Tracking

9 Use the Constant block to define the size of the image of the cat sculpture.
Set the Constant value parameter to single([41 41]).

10 Use the Mux block to concatenate the location of the maximum value and
the size of the image of the cat sculpture into a single vector. You use this
vector to define a rectangular region of interest (ROI) that you pass to the
Draw Shapes block.

11 Use the Draw Shapes block to draw a rectangle around the portion of each
video frame that best matches the image of the cat sculpture. Accept the
default parameters.

12 Use the Video Viewer block to display the video stream with the ROI
displayed on it. Accept the default parameters.

The Video Viewer block automatically displays the video in the Video
Viewer window when you run the model. Because the image is represented

4-8

Track an Object Using Correlation

by single-precision floating-point values, a value of 0 corresponds to black
and a value of 1 corresponds to white.

13 Connect the blocks as shown in the following figure.

14 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = inf

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

15 Run the simulation.

The video is displayed in the Video Viewer window and a rectangular
box appears around the cat sculpture. To view the video at its true size,
right-click the window and select Set Display To True Size.

4-9

4 Motion Analysis and Tracking

As the video plays, you can watch the rectangular ROI follow the sculpture
as it moves.

4-10

Track an Object Using Correlation

In this example, you used the 2-D Correlation, 2-D Maximum, and Draw
Shapes blocks to track the motion of an object in a video stream. For more
information about these blocks, see the 2-D Correlation, 2-D Maximum, and
Draw Shapes block reference pages.

Note This example model does not provide an indication of whether or not
the sculpture is present in each video frame. For an example of this type of
model, type vippattern at the MATLAB command prompt.

4-11

4 Motion Analysis and Tracking

Create a Panoramic Scene
The motion estimation subsystem for the Panorama Creation demo uses
template matching. This model uses the Template Matching block to estimate
the motion between consecutive video frames. It then computes the motion
vector of a particular block in the current frame with respect to the previous
frame. The model uses this motion vector to align consecutive frames of the
video to form a panoramic picture.

You can find demos for the Computer Vision System Toolbox by typing
visiondemos on the MATLAB command line. You can launch the Panorama
model directly by typing vippanorama on the MATLAB command line.

4-12

5

Geometric Transformations

• “Rotate an Image” on page 5-2

• “Resize an Image” on page 5-9

• “Crop an Image” on page 5-15

• “Interpolation Methods” on page 5-21

• “Automatically Determine Geometric Transform for Image Registration”
on page 5-25

5 Geometric Transformations

Rotate an Image
You can use the Rotate block to rotate your image or video stream by a
specified angle. In this example, you learn how to use the Rotate block to
continuously rotate an image:

1 Define an RGB image in the MATLAB workspace. At the MATLAB
command prompt, type

I = checker_board;

I is a 100-by-100-by-3 array of double-precision values. Each plane of the
array represents the red, green, or blue color values of the image.

2 To view the image this matrix represents, at the MATLAB command
prompt, type

imshow(I)

3 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From
Workspace

Computer Vision System Toolbox
> Sources

1

Rotate Computer Vision System Toolbox
> Geometric Transformations

1

5-2

Rotate an Image

Block Library Quantity

Video Viewer Computer Vision System Toolbox
> Sinks

2

Gain Simulink > Math Operations 1

Display DSP System Toolbox > Signal
Processing Sinks

1

Counter DSP System Toolbox > Signal
Management > Switches and
Counters

1

4 Position the blocks as shown in the following figure.

5-3

5 Geometric Transformations

You are now ready to set your block parameters by double-clicking the
blocks, modifying the block parameter values, and clicking OK.

5 Use the Image From Workspace block to import the RGB image from the
MATLAB workspace. On the Main pane, set the Value parameter to
I.Each plane of the array represents the red, green, or blue color values
of the image.

6 Use the Video Viewer block to display the original image. Accept the
default parameters.

The Video Viewer block automatically displays the original image in
the Video Viewer window when you run the model. Because the image
is represented by double-precision floating-point values, a value of 0
corresponds to black and a value of 1 corresponds to white.

7 Use the Rotate block to rotate the image. Set the block parameters as
follows:

• Rotation angle source = Input port

• Sine value computation method = Trigonometric function

5-4

Rotate an Image

The Angle port appears on the block. You use this port to input a steadily
increasing angle. Setting the Output size parameter to Expanded to fit
rotated input image ensures that the block does not crop the output.

8 Use the Video Viewer1 block to display the rotating image. Accept the
default parameters.

9 Use the Counter block to create a steadily increasing angle. Set the block
parameters as follows:

• Count event = Free running

5-5

5 Geometric Transformations

• Counter size = 16 bits

• Output = Count

• Clear the Reset input check box.

• Sample time = 1/30

The Counter block counts upward until it reaches the maximum value
that can be represented by 16 bits. Then, it starts again at zero. You can
view its output value on the Display block while the simulation is running.
The Counter block’s Count data type parameter enables you to specify
it’s output data type.

10 Use the Gain block to convert the output of the Counter block from degrees
to radians. Set the Gain parameter to pi/180.

11 Connect the blocks as shown in the following figure.

5-6

Rotate an Image

12 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = inf

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

13 Run the model.

The original image appears in the Video Viewer window.

The rotating image appears in the Video Viewer1 window.

5-7

5 Geometric Transformations

In this example, you used the Rotate block to continuously rotate your image.
For more information about this block, see the Rotate block reference page
in the Computer Vision System Toolbox Reference. For more information
about other geometric transformation blocks, see the Resize and Shear block
reference pages.

Note If you are on a Windows operating system, you can replace the Video
Viewer block with the To Video Display block, which supports code generation.

5-8

Resize an Image

Resize an Image
You can use the Resize block to change the size of your image or video stream.
In this example, you learn how to use the Resize block to reduce the size
of an image:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox
> Sources

1

Resize Computer Vision System Toolbox
> Geometric Transformations

1

Video Viewer Computer Vision System Toolbox
> Sinks

2

2 Position the blocks as shown in the following figure.

5-9

5 Geometric Transformations

3 Use the Image From File block to import the intensity image. Set the File
name parameter to moon.tif. The tif file is a 537-by-358 matrix of 8-bit
unsigned integer values.

4 Use the Video Viewer block to display the original image. Accept the
default parameters.

The Video Viewer block automatically displays the original image in the
Video Viewer window when you run the model.

5 Use the Resize block to shrink the image. Set the Resize factor in %
parameter to 50.

5-10

Resize an Image

The Resize block shrinks the image to half its original size.

6 Use the Video Viewer1 block to display the modified image. Accept the
default parameters.

7 Connect the blocks as shown in the following figure.

5-11

5 Geometric Transformations

8 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

9 Run the model.

The original image appears in the Video Viewer window.

5-12

Resize an Image

The reduced image appears in the Video Viewer1 window.

5-13

5 Geometric Transformations

In this example, you used the Resize block to shrink an image. For more
information about this block, see the Resize block reference page. For more
information about other geometric transformation blocks, see the Rotate,
Shear, and Translate block reference pages.

5-14

Crop an Image

Crop an Image
You can use the Selector block to crop your image or video stream. In this
example, you learn how to use the Selector block to trim an image down to a
particular region of interest:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox
> Sources

1

Video Viewer Computer Vision System Toolbox
> Sinks

2

Selector Simulink > Signal Routing 1

2 Position the blocks as shown in the following figure.

5-15

5 Geometric Transformations

3 Use the Image From File block to import the intensity image. Set the File
name parameter to coins.png. The image is a 246-by-300 matrix of 8-bit
unsigned integer values.

4 Use the Video Viewer block to display the original image. Accept the
default parameters.

The Video Viewer block automatically displays the original image in the
Video Viewer window when you run the model.

5 Use the Selector block to crop the image. Set the block parameters as
follows:

• Number of input dimensions = 2

• 1

– Index Option = Starting index (dialog)

– Index = 140

5-16

Crop an Image

– Output Size = 70

• 2

– Index Option = Starting index (dialog)

– Index = 200

– Output Size = 70

The Selector block starts at row 140 and column 200 of the image and
outputs the next 70 rows and columns of the image.

6 Use the Video Viewer1 block to display the cropped image.

The Video Viewer1 block automatically displays the modified image in the
Video Viewer window when you run the model.

7 Connect the blocks as shown in the following figure.

5-17

5 Geometric Transformations

8 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

9 Run the model.

The original image appears in the Video Viewer window.

5-18

Crop an Image

The cropped image appears in the Video Viewer window. The following
image is shown at its true size.

5-19

5 Geometric Transformations

In this example, you used the Selector block to crop an image. For more
information about the Selector block, see the Simulink documentation. For
information about the imcrop function, see the Image Processing Toolbox
documentation.

5-20

Interpolation Methods

Interpolation Methods

In this section...

“Nearest Neighbor Interpolation” on page 5-21

“Bilinear Interpolation” on page 5-22

“Bicubic Interpolation” on page 5-23

Nearest Neighbor Interpolation
For nearest neighbor interpolation, the block uses the value of nearby
translated pixel values for the output pixel values.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 1.7 pixels in
the positive horizontal direction using nearest neighbor interpolation. The
Translate block’s nearest neighbor interpolation algorithm is illustrated by
the following steps:

1 Zero pad the input matrix and translate it by 1.7 pixels to the right.

� � � � �

� � � � �

	
 � � �

�������	
�

������
��	������	�������

����
��	���	������	�������

� � � � � �

� � � � � �

� � 	
 � �

5-21

5 Geometric Transformations

2 Create the output matrix by replacing each input pixel value with the
translated value nearest to it. The result is the following matrix:

0 0 1 2 3
0 0 4 5 6
0 0 7 8 9

Note You wanted to translate the image by 1.7 pixels, but this method
translated the image by 2 pixels. Nearest neighbor interpolation is
computationally efficient but not as accurate as bilinear or bicubic
interpolation.

Bilinear Interpolation
For bilinear interpolation, the block uses the weighted average of two
translated pixel values for each output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 0.5 pixel in
the positive horizontal direction using bilinear interpolation. The Translate
block’s bilinear interpolation algorithm is illustrated by the following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

5-22

Interpolation Methods

� � � � � � � � �

� � � � � � � � �

� 	 	

 � � � �

�������	
������
��	������	�������

����
��	���	������	�������

2 Create the output matrix by replacing each input pixel value with the
weighted average of the translated values on either side. The result is
the following matrix where the output matrix has one more column than
the input matrix:

0 5 1 5 2 5 1 5
2 4 5 5 5 3

3 5 7 5 8 5 4 5

. . . .
. .

. . . .

Bicubic Interpolation
For bicubic interpolation, the block uses the weighted average of four
translated pixel values for each output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 0.5 pixel in
the positive horizontal direction using bicubic interpolation. The Translate
block’s bicubic interpolation algorithm is illustrated by the following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

5-23

5 Geometric Transformations

� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � 	 	

 � � � � � �

�������	

������
��	������	�������

����
��	���	������	�������

2 Create the output matrix by replacing each input pixel value with the
weighted average of the two translated values on either side. The result is
the following matrix where the output matrix has one more column than
the input matrix:

0 375 1 5 3 1 625
1 875 4 875 6 375 3 125
3 375 8 25 9 75 4 625

. . .

. . . .

. . . .

5-24

Automatically Determine Geometric Transform for Image Registration

Automatically Determine Geometric Transform for Image
Registration

Stabilizing a video that was captured from a jittery or moving platform is an
important application in computer vision. One way to stabilize a video is
to track a salient feature in the image and use this as an anchor point to
cancel out all perturbations relative to it. This procedure, however, must
be bootstrapped with knowledge of where such a salient feature lies in the
first video frame. In this example, we explore a method of video stabilization
that works without any such a priori knowledge. It instead automatically
searches for the "background plane" in a video sequence, and uses its observed
distortion to correct for camera motion.

This stabilization algorithm involves two steps. First, we determine the affine
image transformations between all neighboring frames of a video sequence
using a Random Sampling and Consensus (RANSAC) [1] procedure applied to
point correspondences between two images. Second, we warp the video frames
to achieve a stabilized video. We use System objects in the Computer Vision
System Toolbox™, both for the algorithm and for display.

You can launch this example, Video Stabilization Using Point Feature
Matching directly, by typing videostabilize_pm on the MATLAB command
line.

5-25

5 Geometric Transformations

5-26

6

Filters, Transforms, and
Enhancements

• “Adjust the Contrast of Intensity Images” on page 6-2

• “Adjust the Contrast of Color Images” on page 6-8

• “Remove Periodic Noise from a Video” on page 6-14

• “Remove Salt and Pepper Noise from Images” on page 6-23

• “Sharpen an Image” on page 6-30

6 Filters, Transforms, and Enhancements

Adjust the Contrast of Intensity Images
This example shows you how to modify the contrast in two intensity images
using the Contrast Adjustment and Histogram Equalization blocks.

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox >
Sources

2

Contrast
Adjustment

Computer Vision System Toolbox >
Analysis & Enhancement

1

Histogram
Equalization

Computer Vision System Toolbox >
Analysis & Enhancement

1

Video Viewer Computer Vision System Toolbox >
Sinks

4

2 Place the blocks so that your model resembles the following figure.

6-2

Adjust the Contrast of Intensity Images

3 Use the Image From File block to import the first image into the Simulink
model. Set the File name parameter to pout.tif.

4 Use the Image From File1 block to import the second image into the
Simulink model. Set the File name parameter to tire.tif.

5 Use the Contrast Adjustment block to modify the contrast in pout.tif.
Set the Adjust pixel values from parameter to Range determined by
saturating outlier pixels, as shown in the following figure.

6-3

6 Filters, Transforms, and Enhancements

This block adjusts the contrast of the image by linearly scaling the pixel
values between user-specified upper and lower limits.

6 Use the Histogram Equalization block to modify the contrast in tire.tif.
Accept the default parameters.

6-4

Adjust the Contrast of Intensity Images

This block enhances the contrast of images by transforming the values in
an intensity image so that the histogram of the output image approximately
matches a specified histogram.

7 Use the Video Viewer blocks to view the original and modified images.
Accept the default parameters.

8 Connect the blocks as shown in the following figure.

6-5

6 Filters, Transforms, and Enhancements

9 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run the model.

The results appear in the Video Viewer windows.

6-6

Adjust the Contrast of Intensity Images

In this example, you used the Contrast Adjustment block to linearly scale the
pixel values in pout.tif between new upper and lower limits. You used the
Histogram Equalization block to transform the values in tire.tif so that the
histogram of the output image approximately matches a uniform histogram.
For more information, see the Contrast Adjustment and Histogram
Equalization reference pages.

6-7

6 Filters, Transforms, and Enhancements

Adjust the Contrast of Color Images
This example shows you how to modify the contrast in color images using
the Histogram Equalization block.

1 Use the following code to read in an indexed RGB image, shadow.tif, and
convert it to an RGB image.

[X map] = imread('shadow.tif');
shadow = ind2rgb(X,map);

2 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From
Workspace

Computer Vision System Toolbox >
Sources

1

Color Space
Conversion

Computer Vision System Toolbox >
Conversions

2

Histogram
Equalization

Computer Vision System Toolbox >
Analysis & Enhancement

1

Video Viewer Computer Vision System Toolbox >
Sinks

2

Constant Simulink > Sources 1

Divide Simulink > Math Operations 1

Product Simulink > Math Operations 1

3 Place the blocks so that your model resembles the following figure.

6-8

Adjust the Contrast of Color Images

4 Use the Image From Workspace block to import the RGB image from the
MATLAB workspace into the Simulink model. Set the block parameters as
follows:

• Value = shadow

• Image signal = Separate color signals

5 Use the Color Space Conversion block to separate the luma information
from the color information. Set the block parameters as follows:

• Conversion = sR'G'B' to L*a*b*

• Image signal = Separate color signals

Because the range of the L* values is between 0 and 100, you must
normalize them to be between zero and one before you pass them to the
Histogram Equalization block, which expects floating point input in this
range.

6 Use the Constant block to define a normalization factor. Set the Constant
value parameter to 100.

7 Use the Divide block to normalize the L* values to be between 0 and 1.
Accept the default parameters.

6-9

6 Filters, Transforms, and Enhancements

8 Use the Histogram Equalization block to modify the contrast in the image.
Accept the default parameters.

This block enhances the contrast of images by transforming the luma
values in the color image so that the histogram of the output image
approximately matches a specified histogram.

9 Use the Product block to scale the values back to be between the 0 to 100
range. Accept the default parameters.

10 Use the Color Space Conversion1 block to convert the values back to the
sR’G’B’ color space. Set the block parameters as follows:

• Conversion = L*a*b* to sR'G'B'

• Image signal = Separate color signals

11 Use the Video Viewer blocks to view the original and modified images. For
each block, set the Image signal parameter to Separate color signals
from the file menu.

12 Connect the blocks as shown in the following figure.

6-10

Adjust the Contrast of Color Images

13 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

14 Run the model.

6-11

6 Filters, Transforms, and Enhancements

As shown in the following figure, the model displays the original image in
the Video Viewer1 window.

6-12

Adjust the Contrast of Color Images

As the next figure shows, the model displays the enhanced contrast image
in the Video Viewer window.

In this example, you used the Histogram Equalization block to transform
the values in a color image so that the histogram of the output image
approximately matches a uniform histogram. For more information, see the
Histogram Equalization reference page.

6-13

6 Filters, Transforms, and Enhancements

Remove Periodic Noise from a Video
Periodic noise can be introduced into a video stream during acquisition or
transmission due to electrical or electromechanical interference. In this
example, you remove periodic noise from an intensity video using the 2-D FIR
Filter block. You can use this technique to remove noise from other images or
video streams, but you might need to modify the filter coefficients to account
for the noise frequency content present in your signal:

1 Create a Simulink model, and add the blocks shown in the following table.

Block Library Quantity

Read Binary File Computer Vision System Toolbox >
Sources

1

Image Data Type
Conversion

Computer Vision System Toolbox >
Conversions

1

2-D FIR Filter Computer Vision System Toolbox >
Filtering

1

Video Viewer Computer Vision System Toolbox >
Sinks

3

Add Simulink > Math Operations 1

2 Open the Periodic noise reduction demo by typing vipstripes at the
MATLAB command prompt.

3 Click-and-drag the Periodic Noise block into your model.

The block outputs a sinusoid with a normalized frequency that ranges
between 0.61π and 0.69π radians per sample and a phase that varies
between zero and three radians. You are using this sinusoid to represent
periodic noise.

4 Place the blocks so that your model resembles the following figure. The
unconnected ports disappear when you set block parameters.

6-14

Remove Periodic Noise from a Video

You are now ready to set your block parameters by double-clicking the
blocks, modifying the block parameter values, and clicking OK.

5 Use the Read Binary File block to import a binary file into the model. Set
the block parameters as follows:

• File name = cat_video.bin

• Four character code = GREY

• Number of times to play file = inf

• Sample time = 1/30

6-15

6 Filters, Transforms, and Enhancements

6 Use the Image Data Type Conversion block to convert the data type of the
video to single-precision floating point. Accept the default parameter.

7 Use the Video Viewer block to view the original video. Accept the default
parameters.

8 Use the Add block to add the noise video to the original video. Accept the
default parameters.

9 Use the Video Viewer1 block to view the noisy video. Accept the default
parameters.

10 Define the filter coefficients in the MATLAB workspace. Type the following
code at the MATLAB command prompt:

6-16

Remove Periodic Noise from a Video

vipdh_stripes

The variable h, as well as several others, are loaded into the MATLAB
workspace. The variable h represents the coefficients of the band reject
filter capable of removing normalized frequencies between 0.61π and 0.69π
radians per sample. The coefficients were created using the Filter Design
and Analysis Tool (FDATool) and the ftrans2 function.

11 Use the 2-D FIR Filter block to model a band-reject filter capable of
removing the periodic noise from the video. Set the block parameters as
follows:

• Coefficients = h

• Output size = Same as input port I

• Padding options = Circular

Choose a type of padding that minimizes the effect of the pixels outside the
image on the processing of the image. In this example, circular padding
produces the best results because it is most effective at replicating the
sinusoidal noise outside the image.

6-17

6 Filters, Transforms, and Enhancements

12 Use the Video Viewer2 block to view the approximation of the original
video. Accept the default parameters.

13 Connect the block as shown in the following figure.

6-18

Remove Periodic Noise from a Video

14 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = inf

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

15 Run the model.

6-19

6 Filters, Transforms, and Enhancements

The noisy video appears in the Video Viewer1 window. The following video
is shown at its true size.

6-20

Remove Periodic Noise from a Video

The approximation of the original video appears in the Video Viewer2
window, and the artifacts of the processing appear near the edges of the
video. The following video is shown at its true size.

6-21

6 Filters, Transforms, and Enhancements

You have used the Read Binary File block to import a binary video into your
model, the 2-D FIR Filter to remove periodic noise from this video, and the
Video Viewer block to display the results. For more information about these
blocks, see the Read Binary File, 2-D FIR Filter, and Video Viewer block
reference pages. For more information about the Filter Design and Analysis
Tool (FDATool), see the Signal Processing Toolbox documentation. For
information about the ftrans2 function, see the Image Processing Toolbox
documentation.

6-22

Remove Salt and Pepper Noise from Images

Remove Salt and Pepper Noise from Images
Median filtering is a common image enhancement technique for removing
salt and pepper noise. Because this filtering is less sensitive than linear
techniques to extreme changes in pixel values, it can remove salt and pepper
noise without significantly reducing the sharpness of an image. In this topic,
you use the Median Filter block to remove salt and pepper noise from an
intensity image:

1 Define an intensity image in the MATLAB workspace and add noise to it by
typing the following at the MATLAB command prompt:

I= double(imread('circles.png'));
I= imnoise(I,'salt & pepper',0.02);

I is a 256-by-256 matrix of 8-bit unsigned integer values.

2 To view the image this matrix represents, at the MATLAB command
prompt, type

imshow(I)

6-23

6 Filters, Transforms, and Enhancements

The intensity image contains noise that you want your model to eliminate.

3 Create a Simulink model, and add the blocks shown in the following table.

Block Library Quantity

Image From
Workspace

Computer Vision System Toolbox >
Sources

1

Median Filter Computer Vision System Toolbox >
Filtering

1

Video Viewer Computer Vision System Toolbox >
Sinks

2

4 Position the blocks as shown in the following figure.

6-24

Remove Salt and Pepper Noise from Images

5 Use the Image From Workspace block to import the noisy image into your
model. Set the Value parameter to I.

6 Use the Median Filter block to eliminate the black and white speckles in
the image. Use the default parameters.

6-25

6 Filters, Transforms, and Enhancements

The Median Filter block replaces the central value of the 3-by-3
neighborhood with the median value of the neighborhood. This process
removes the noise in the image.

7 Use the Video Viewer blocks to display the original noisy image, and
the modified image. Images are represented by 8-bit unsigned integers.
Therefore, a value of 0 corresponds to black and a value of 255 corresponds
to white. Accept the default parameters.

8 Connect the blocks as shown in the following figure.

6-26

Remove Salt and Pepper Noise from Images

9 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run the model.

The original noisy image appears in the Video Viewer window. To view
the image at its true size, right-click the window and select Set Display
To True Size.

6-27

6 Filters, Transforms, and Enhancements

The cleaner image appears in the Video Viewer1 window. The following
image is shown at its true size.

6-28

Remove Salt and Pepper Noise from Images

You have used the Median Filter block to remove noise from your image. For
more information about this block, see the Median Filter block reference page
in the Computer Vision System Toolbox Reference.

6-29

6 Filters, Transforms, and Enhancements

Sharpen an Image
To sharpen a color image, you need to make the luma intensity transitions
more acute, while preserving the color information of the image. To do this,
you convert an R’G’B’ image into the Y’CbCr color space and apply a highpass
filter to the luma portion of the image only. Then, you transform the image
back to the R’G’B’ color space to view the results. To blur an image, you apply
a lowpass filter to the luma portion of the image. This example shows how
to use the 2-D FIR Filter block to sharpen an image. The prime notation
indicates that the signals are gamma corrected.

1 Define an R’G’B’ image in the MATLAB workspace. To read in an R’G’B’
image from a PNG file and cast it to the double-precision data type, at the
MATLAB command prompt, type

I= im2double(imread('peppers.png'));

I is a 384-by-512-by-3 array of double-precision floating-point values.
Each plane of this array represents the red, green, or blue color values
of the image.

2 To view the image this array represents, at the MATLAB command
prompt, type

imshow(I)

6-30

Sharpen an Image

Now that you have defined your image, you can create your model.

3 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From
Workspace

Computer Vision System Toolbox >
Sources

1

Color Space
Conversion

Computer Vision System Toolbox >
Conversions

2

2-D FIR Filter Computer Vision System Toolbox >
Filtering

1

Video Viewer Computer Vision System Toolbox > Sinks 1

6-31

6 Filters, Transforms, and Enhancements

4 Position the blocks as shown in the following figure.

5 Use the Image From Workspace block to import the R’G’B’ image from the
MATLAB workspace. Set the parameters as follows:

• Main pane, Value = I

• Main pane, Image signal = Separate color signals

The block outputs the R’, G’, and B’ planes of the I array at the output ports.

6 The first Color Space Conversion block converts color information from
the R’G’B’ color space to the Y’CbCr color space. Set the Image signal
parameter to Separate color signals

6-32

Sharpen an Image

7 Use the 2-D FIR Filter block to filter the luma portion of the image. Set the
block parameters as follows:

• Coefficients = fspecial('unsharp')

• Output size = Same as input port I

• Padding options = Symmetric

• Filtering based on = Correlation

6-33

6 Filters, Transforms, and Enhancements

The fspecial('unsharp') command creates two-dimensional highpass
filter coefficients suitable for correlation. This highpass filter sharpens the
image by removing the low frequency noise in it.

8 The second Color Space Conversion block converts the color information
from the Y’CbCr color space to the R’G’B’ color space. Set the block
parameters as follows:

• Conversion = Y'CbCr to R'G'B'

• Image signal = Separate color signals

6-34

Sharpen an Image

9 Use the Video Viewer block to automatically display the new, sharper
image in the Video Viewer window when you run the model. Set the Image
signal parameter to Separate color signals, by selecting File > Image
Signal.

10 Connect the blocks as shown in the following figure.

6-35

6 Filters, Transforms, and Enhancements

11 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

12 Run the model.

A sharper version of the original image appears in the Video Viewer
window.

6-36

Sharpen an Image

To blur the image, double-click the 2-D FIR Filter block. Set Coefficients
parameter to fspecial('gaussian',[15 15],7) and then click OK. The
fspecial('gaussian',[15 15],7) command creates two-dimensional
Gaussian lowpass filter coefficients. This lowpass filter blurs the image by
removing the high frequency noise in it.

6-37

6 Filters, Transforms, and Enhancements

In this example, you used the Color Space Conversion and 2-D FIR Filter
blocks to sharpen an image. For more information, see the Color Space
Conversion and 2-D FIR Filter, and fspecial reference pages.

6-38

7

Statistics and
Morphological Operations

• “Find the Histogram of an Image” on page 7-2

• “Correct Nonuniform Illumination” on page 7-9

• “Count Objects in an Image” on page 7-17

7 Statistics and Morphological Operations

Find the Histogram of an Image
The Histogram block computes the frequency distribution of the elements in
each input image by sorting the elements into a specified number of discrete
bins. You can use the Histogram block to calculate the histogram of the R,
G, and/or B values in an image. This example shows you how to accomplish
this task:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox >
Sources

1

Video Viewer Computer Vision System Toolbox >
Sinks

1

Matrix
Concatenate

Simulink > Math Operations 1

Vector Scope DSP System Toolbox > Signal
Processing Sinks

1

Histogram DSP System Toolbox > Statistics 3

2 Place the blocks so that your model resembles the following figure.

7-2

Find the Histogram of an Image

3 Use the Image From File block to import an RGB image. Set the block
parameters as follows:

• Sample time = inf

• Image signal = Separate color signals

• Output port labels: = R|G|B

• Output data type: = double

7-3

7 Statistics and Morphological Operations

4 Use the Video Viewer block to automatically display the original image
in the viewer window when you run the model. Set the Image signal
parameter to Separate color signals.

5 Use the Histogram blocks to calculate the histogram of the R, G, and B
values in the image. Set the Main tab block parameters for the three
Histogram blocks as follows:

• Lower limit of histogram: 0

• Upper limit of histogram: 1

• Number of bins: = 256

7-4

Find the Histogram of an Image

The R, G, and B input values to the Histogram block are double-precision
floating point and range between 0 and 1. The block creates 256 bins
between the maximum and minimum input values and counts the number
of R, G, and B values in each bin.

6 Use the Matrix Concatenate block to concatenate the R, G, and B column
vectors into a single matrix so they can be displayed using the Vector Scope
block. Set the Number of inputs parameter to 3.

7 Use the Vector Scope block to display the histograms of the R, G, and B
values of the input image. Set the block parameters as follows:

• Scope Properties pane, Input domain = User-defined

• Display Properties pane, clear the Frame number check box

• Display Properties pane, select the Channel legend check box

• Display Properties pane, select the Compact display check box

7-5

7 Statistics and Morphological Operations

• Axis Properties pane, clear the Inherit sample increment from
input check box.

• Axis Properties pane, Minimum Y-limit = 0

• Axis Properties pane, Maximum Y-limit = 1

• Axis Properties pane, Y-axis label = Count

• Line Properties pane, Line markers = .|s|d

• Line Properties pane, Line colors = [1 0 0]|[0 1 0]|[0 0 1]

8 Connect the blocks as shown in the following figure.

7-6

Find the Histogram of an Image

9 Open the Configuration dialog box by selecting Configuration
Parameters from the Simulation menu. Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run the model using either the simulation button, or by selecting
Simulation > Start.

The original image appears in the Video Viewer window.

11 Right-click in the Vector Scope window and select Autoscale.

7-7

7 Statistics and Morphological Operations

The scaled histogram of the image appears in the Vector Scope window.

You have now used the Histogram block to calculate the histogram of the R,
G, and B values in an RGB image. For more information about this block, see
the Histogram reference page. To open a demo model that illustrates how to
use this block to calculate the histogram of the R, G, and B values in an RGB
video stream, type viphistogram at the MATLAB command prompt.

7-8

Correct Nonuniform Illumination

Correct Nonuniform Illumination
Global threshold techniques, which are often the first step in object
measurement, cannot be applied to unevenly illuminated images. To correct
this problem, you can change the lighting conditions and take another picture,
or you can use morphological operators to even out the lighting in the image.
Once you have corrected for nonuniform illumination, you can pick a global
threshold that delineates every object from the background. In this topic, you
use the Opening block to correct for uneven lighting in an intensity image:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox >
Sources

1

Opening Computer Vision System Toolbox >
Morphological Operations

1

Video Viewer Computer Vision System Toolbox >
Sinks

4

Constant Simulink > Sources 1

Sum Simulink > Math Operations 2

Data Type Conversion Simulink > Signal Attributes 1

2 Position the blocks as shown in the following figure.

7-9

7 Statistics and Morphological Operations

Once you have assembled the blocks required to correct for uneven
illumination, you need to set your block parameters. To do this, double-click
the blocks, modify the block parameter values, and click OK.

3 Use the Image From File block to import the intensity image. Set the File
name parameter to rice.png. This image is a 256-by-256 matrix of 8-bit
unsigned integer values.

4 Use the Video Viewer block to view the original image. Accept the default
parameters.

5 Use the Opening block to estimate the background of the image.
Set the Neighborhood or structuring element parameter to
strel('disk',15).

7-10

Correct Nonuniform Illumination

The strel function creates a circular STREL object with a radius of 15
pixels. When working with the Opening block, pick a STREL object that
fits within the objects you want to keep. It often takes experimentation to
find the neighborhood or STREL object that best suits your application.

6 Use the Video Viewer1 block to view the background estimated by the
Opening block. Accept the default parameters.

7 Use the first Sum block to subtract the estimated background from the
original image. Set the block parameters as follows:

• Icon shape = rectangular

• List of signs = -+

8 Use the Video Viewer2 block to view the result of subtracting the
background from the original image. Accept the default parameters.

9 Use the Constant block to define an offset value. Set the Constant value
parameter to 80.

10 Use the Data Type Conversion block to convert the offset value to an 8-bit
unsigned integer. Set the Output data type mode parameter to uint8.

7-11

7 Statistics and Morphological Operations

11 Use the second Sum block to lighten the image so that it has the same
brightness as the original image. Set the block parameters as follows:

• Icon shape = rectangular

• List of signs = ++

12 Use the Video Viewer3 block to view the corrected image. Accept the
default parameters.

13 Connect the blocks as shown in the following figure.

14 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = discrete (no continuous states)

7-12

Correct Nonuniform Illumination

15 Run the model.

The original image appears in the Video Viewer window.

The estimated background appears in the Video Viewer1 window.

7-13

7 Statistics and Morphological Operations

The image without the estimated background appears in the Video Viewer2
window.

7-14

Correct Nonuniform Illumination

The preceding image is too dark. The Constant block provides an offset
value that you used to brighten the image.

The corrected image, which has even lighting, appears in the Video Viewer3
window. The following image is shown at its true size.

7-15

7 Statistics and Morphological Operations

In this section, you have used the Opening block to remove irregular
illumination from an image. For more information about this block, see
the Opening reference page. For related information, see the Top-hat block
reference page. For more information about STREL objects, see the strel
function in the Image Processing Toolbox documentation.

7-16

Count Objects in an Image

Count Objects in an Image
In this example, you import an intensity image of a wheel from the MATLAB
workspace and convert it to binary. Then, using the Opening and Label blocks,
you count the number of spokes in the wheel. You can use similar techniques
to count objects in other intensity images. However, you might need to use
additional morphological operators and different structuring elements:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Computer Vision System Toolbox >
Sources

1

Opening Computer Vision System Toolbox>
Morphological Operations

1

Label Computer Vision System Toolbox >
Morphological Operations

1

Video Viewer Computer Vision System Toolbox >
Sinks

2

Constant Simulink > Sources 1

Relational Operator Simulink > Logic and Bit
Operations

1

Display DSP System Toolbox > Signal
Processing Sinks

1

2 Position the blocks as shown in the following figure. The unconnected ports
disappear when you set block parameters.

7-17

7 Statistics and Morphological Operations

You are now ready to set your block parameters by double-clicking the
blocks, modifying the block parameter values, and clicking OK.

3 Use the Image From File block to import your image. Set the File name
parameter to testpat1.png. This is a 256-by-256 matrix image of 8-bit
unsigned integers.

4 Use the Constant block to define a threshold value for the Relational
Operator block. Set the Constant value parameter to 200.

5 Use the Video Viewer block to view the original image. Accept the default
parameters.

6 Use the Relational Operator block to perform a thresholding operation
that converts your intensity image to a binary image. Set the Relational
Operator parameter to <.

If the input to the Relational Operator block is less than 200, its output is
1; otherwise, its output is 0. You must threshold your intensity image
because the Label block expects binary input. Also, the objects it counts
must be white.

7 Use the Opening block to separate the spokes from the rim and from each
other at the center of the wheel. Use the default parameters.

7-18

Count Objects in an Image

The strel function creates a circular STREL object with a radius of 5
pixels. When working with the Opening block, pick a STREL object that
fits within the objects you want to keep. It often takes experimentation to
find the neighborhood or STREL object that best suits your application.

8 Use the Video Viewer1 block to view the opened image. Accept the default
parameters.

9 Use the Label block to count the number of spokes in the input image. Set
the Output parameter to Number of labels.

7-19

7 Statistics and Morphological Operations

10 The Display block displays the number of spokes in the input image. Use
the default parameters.

11 Connect the block as shown in the following figure.

7-20

Count Objects in an Image

12 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = discrete (no continuous states)

13 Run the model.

The original image appears in the Video Viewer1 window. To view the
image at its true size, right-click the window and select Set Display To
True Size.

7-21

7 Statistics and Morphological Operations

The opened image appears in the Video Viewer window. The following
image is shown at its true size.

As you can see in the preceding figure, the spokes are now separate white
objects. In the model, the Display block correctly indicates that there are
24 distinct spokes.

7-22

Count Objects in an Image

You have used the Opening and Label blocks to count the number of spokes
in an image. For more information about these blocks, see the Opening and
Label block reference pages in the Computer Vision System Toolbox Reference.
If you want to send the number of spokes to the MATLAB workspace, use the
To Workspace block in Simulink or the Signal to Workspace block in DSP
System Toolbox. For more information about STREL objects, see strel in the
Image Processing Toolbox documentation.

7-23

7 Statistics and Morphological Operations

7-24

8

Code Generation

• “System Objects that Generate Code” on page 8-2

• “Functions that Generate Code” on page 8-6

• “Shared Library Dependencies” on page 8-7

• “Accelerating Simulink Models” on page 8-8

8 Code Generation

System Objects that Generate Code
The following Computer Vision System Toolbox System objects support code
generation in MATLAB. See “Use System Objects for Code Generation from
MATLAB” and “Use System Objects for Code Generation from MATLAB”.

Supported Computer Vision System Toolbox System Objects

Object Description

Analysis & Enhancement

vision.BoundaryTracer Trace object boundaries in binary images

vision.ContrastAdjuster Adjust image contrast by linear scaling

vision.Deinterlacer Remove motion artifacts by deinterlacing input
video signal

vision.EdgeDetector Find edges of objects in images

vision.ForegroundDetector Detect foreground using Gaussian Mixture
Models

vision.HistogramEqualizer Enhance contrast of images using histogram
equalization

vision.TemplateMatcher Perform template matching by shifting
template over image

Conversions

vision.Autothresholder Convert intensity image to binary image

vision.ChromaResampler Downsample or upsample chrominance
components of images

vision.ColorSpaceConverter Convert color information between color spaces

vision.DemosaicInterpolator Demosaic Bayer’s format images

vision.GammaCorrector Apply or remove gamma correction from
images or video streams

vision.ImageComplementer Compute complement of pixel values in binary,
intensity, or RGB images

8-2

System Objects that Generate Code

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.ImageDataTypeConverter Convert and scale input image to specified
output data type

Filtering

vision.Convolver Compute 2-D discrete convolution of two input
matrices

vision.ImageFilter Perform 2-D FIR filtering of input matrix

vision.MedianFilter 2D median filtering

Geometric Transformations

vision.GeometricRotator Rotate image by specified angle

vision.GeometricRotator Enlarge or shrink image size

vision.GeometricScaler Shift rows or columns of image by linearly
varying offset

vision.GeometricTransformer Apply projective or affine transformation to an
image

vision.GeometricTransformEstimator Estimate geometric transformation from
matching point pairs

vision.GeometricTranslator Translate image in two-dimensional plane
using displacement vector

Morphological Operations

vision.ConnectedComponentLabeler Label and count the connected regions in a
binary image

vision.MorphologicalClose Perform morphological closing on image

vision.MorphologicalDilate Perform morphological dilation on an image

vision.MorphologicalErode Perform morphological erosion on an image

8-3

8 Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.MorphologicalOpen Perform morphological opening on an image

Sinks

vision.DeployableVideoPlayer Send video data to computer screen

vision.VideoFileWriter Write video frames and audio samples to
multimedia file

Sources

vision.VideoFileReader Read video frames and audio samples from
compressed multimedia file

Statistics

vision.Autocorrelator Compute 2-D autocorrelation of input matrix

vision.BlobAnalysis Compute statistics for connected regions in a
binary image

vision.Crosscorrelator Compute 2-D cross-correlation of two input
matrices

vision.Histogram Generate histogram of each input matrix

vision.LocalMaximaFinder Find local maxima in matrices

vision.Maximum Find maximum values in input or sequence of
inputs

vision.Mean Find mean value of input or sequence of inputs

vision.Median Find median values in an input

vision.Minimum Find minimum values in input or sequence of
inputs

vision.PSNR Compute peak signal-to-noise ratio (PSNR)
between images

8-4

System Objects that Generate Code

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.StandardDeviation Find standard deviation of input or sequence
of inputs

vision.Variance Find variance values in an input or sequence
of inputs

Text & Graphics

vision.AlphaBlender Combine images, overlay images, or highlight
selected pixels

vision.MarkerInserter Draw markers on output image

vision.ShapeInserter Draw rectangles, lines, polygons, or circles on
images

vision.TextInserter Draw text on image or video stream

Transforms

vision.DCT Compute 2-D discrete cosine transform

vision.FFT Two-dimensional discrete Fourier transform

vision.HoughLines Find Cartesian coordinates of lines that are
described by rho and theta pairs

vision.HoughTransform Find lines in images via Hough transform

vision.IDCT Compute 2-D inverse discrete cosine transform

vision.IFFT Two–dimensional inverse discrete Fourier
transform

vision.Pyramid Perform Gaussian pyramid decomposition

Utilities

vision.ImagePadder Pad or crop input image along its rows,
columns, or both

8-5

8 Code Generation

Functions that Generate Code
The following Computer Vision System Toolbox functions support code
generation in MATLAB. See “Use System Objects for Code Generation from
MATLAB” for more information.

Function Description

epipolarLine Compute epipolar lines for stereo images

estimateFundamentalMatrix Estimate fundamental matrix from corresponding points in
stereo image

estimateUncalibratedRectificationUncalibrated stereo rectification

extractFeatures Extract interest point descriptors

isEpipoleInImage Determine whether image contains epipole

lineToBorderPoints Intersection points of lines in image and image border

matchFeatures Find matching image features

8-6

Shared Library Dependencies

Shared Library Dependencies
In general, the code you generate from Computer Vision System Toolbox
blocks is portable ANSI® C code. After you generate the code, you can
deploy it on another machine. For more information on how to do so, see
“Relocating Code to Another Development Environment” in the Simulink
Coder documentation.

There are a few Computer Vision System Toolbox blocks that generate code
with limited portability. These blocks use precompiled shared libraries, such
as DLLs, to support I/O for specific types of devices and file formats. To
find out which blocks use precompiled shared libraries, open the Computer
Vision System Toolbox Block Support Table. You can identify blocks that
use precompiled shared libraries by checking the footnotes listed in the
Code Generation Support column of the table. All blocks that use shared
libraries have the following footnote:

Host computer only. Excludes Real-Time Windows (RTWIN) target.

Simulink Coder provides functions to help you set up and manage the build
information for your models. For example, one of the “Build Information ”
functions that Simulink Coder provides is getNonBuildFiles. This function
allows you to identify the shared libraries required by blocks in your model. If
your model contains any blocks that use precompiled shared libraries, you can
install those libraries on the target system. The folder that you install the
shared libraries in must be on the system path. The target system does not
need to have MATLAB installed, but it does need to be supported by MATLAB.

8-7

8 Code Generation

Accelerating Simulink Models
The Simulink software offer Accelerator and Rapid Accelerator simulation
modes that remove much of the computational overhead required by Simulink
models. These modes compile target code of your model. Through this method,
the Simulink environment can achieve substantial performance improvements
for larger models. The performance gains are tied to the size and complexity
of your model. Therefore, large models that contain Computer Vision System
Toolbox blocks run faster in Rapid Accelerator or Accelerator mode.

To change between Rapid Accelerator, Accelerator, and Normal mode, use
the drop-down list at the top of the model window.

For more information on the accelerator modes in Simulink, see “Accelerating
Models” in the Simulink User’s Guide.

8-8

Index

IndexA
Accelerator mode 8-8
adding periodic noise to a signal 6-14
adjusting

intensity image contrast 6-2
RGB image contrast 6-8

algorithms
bicubic interpolation 5-23
bilinear interpolation 5-22
nearest neighbor interpolation 5-21

angles
rotation 5-2

annotating
AVI files 2-30

artifacts
in an image 6-14

audio
exporting to video file 1-15

Autothreshold block
to perform thresholding 1-29

AVI files
annotating 2-30
cropping 1-11
saving to multiple files 1-11
splitting 1-11

B
background

estimation 7-9
pixels 3-2

batch processing 1-6
bicubic interpolation 5-23
bilinear interpolation 5-22
binary

conversion from intensity 1-23
images 1-49

blurring images 6-30
Boolean matrices 1-49
boundaries

of objects 3-2
boundary artifacts 6-14
brightening images 7-9

C
changing

image size 5-9
intensity image contrast 6-2
RGB image contrast 6-8

chroma components
of images 1-19

chroma resampling 1-19
chrominance resampling 1-19
color

definition of 1-47
colormaps 1-49
column-major format 1-48
continuous rotation 5-2
contrast

increasing 1-5
conventions

column-major format 1-48
conversion

intensity to binary 1-23
R’G’B’ to intensity 1-35

correction
of uneven lighting 7-9

correlation
used in object tracking 4-4

counting objects 7-17
cropping

AVI files 1-11
images 5-15

D
data types 1-47
definition of

intensity and color 1-47

Index-1

Index

demos
Periodic noise reduction 6-14

detection of
edges 3-2
lines 3-10

downsampling
chroma components 1-19

dynamic range 1-47

E
edge

pixels 3-2
thinning 3-2

edge detection 3-2
electrical interference 6-14
estimation

of image background 7-9
exporting

video files 1-5

F
feature extraction

finding angles between lines 3-16
finding edges 3-2
finding lines 3-10

filtering
median 6-23

finding
angles between lines 3-16
edges of objects 3-2
histograms of images 7-2
lines in images 3-10

frequency distribution
of elements in an image 7-2

fspecial function 6-30

G
gradient components

of images 3-2

H
histograms

of images 7-2

I
image data

storage of 1-48
image rotation 5-2
image sequence processing 1-6
image types 1-48
images

binary 1-49
boundary artifacts 6-14
brightening 7-9
correcting for uneven lighting 7-9
counting objects in 7-17
cropping 5-15
finding angles between lines 3-16
finding edges in 3-2
finding histograms of 7-2
finding lines in 3-10
gradient components 3-2
intensity 1-49
intensity to binary conversion 1-23
labeling objects in 7-17
lightening 7-9
noisy 6-23
periodic noise removal 6-14
removing salt and pepper noise 6-23
resizing of 5-9
RGB 1-49
rotation of 5-2
sharpening and blurring 6-30
true-color 1-49
types of 1-48

importing

Index-2

Index

multimedia files 1-2
improvement

of performance 8-8
increasing video contrast 1-5
intensity

conversion from R’G’B’ 1-35
conversion to binary 1-23
definition of 1-47
images 1-49

intensity images
adjusting the contrast of 6-2

interference
electrical 6-14

interpolation
bicubic 5-23
bilinear 5-22
examples 5-21
nearest neighbor 5-21
overview 5-21

irregular illumination 7-9

L
labeling objects 7-17
lightening images 7-9
location of

lines 3-10
object edges 3-2
objects in an image 4-4

luma components
applying highpass filter 6-30
applying lowpass filter 6-30
of images 1-19

luminance 1-19

M
median filtering 6-23
methods

interpolation 5-21

thresholding 7-9
modes

Normal and Accelerator 8-8
morphology

opening 7-17
STREL object 7-17

multimedia files
exporting 1-5
importing 1-2
viewing 1-2

N
nearest neighbor interpolation 5-21
noise

adding to a signal 6-14
noise removal

periodic 6-14
salt and pepper 6-23

nonuniform illumination
correcting for 7-9

Normal mode 8-8

O
object boundaries 3-2
object tracking

using correlation 4-4
objects

delineating 7-9
location of 4-4

opening 7-17
operations

thresholding 1-24
overview of

interpolation 5-21

P
padding 6-14
performance

Index-3

Index

improving 8-8
periodic noise

removal 6-14

R
R’B’G’

conversion to intensity 1-35
reception

of an RGB image 1-19
reduction

of image size 5-9
region of interest

cropping to 5-15
visualizing 4-4

relational operators
to perform thresholding 1-24

removal of
periodic noise 6-14
salt and pepper noise 6-23

resampling
chroma 1-19

resizing
images 5-9

RGB images 1-49
adjusting the contrast of 6-8

rotation
continual 5-2
of an image 5-2

S
salt and pepper noise removal 6-23
saving

to multiple AVI files 1-11
scaling 1-47

data types 3-2
sectioning

AVI files 1-11
sequence

of images 1-6
sharpening images 6-30
shrinking

image size 5-9
Sobel kernel 3-2
splitting

AVI files 1-11
storage of image data 1-48
STREL object 7-17

T
techniques

thresholding 7-9
thresholding operation 1-24

with uneven lighting 1-29
thresholding techniques 7-9
tracking

of an object 4-4
transmission

of an RGB image 1-19
trimming

images 5-15
true-color images 1-49
types of images 1-48

U
uneven lighting

correcting for 7-9

V
video

annotating AVI files with video frame
numbers 2-30

exporting from video file 1-5
importing from multimedia file 1-2
increasing the contrast of 1-5
interpretation of 1-47

video files

Index-4

Index

exporting audio and video 1-15
viewing

multimedia files 1-2
video files 1-2

Index-5

	toc
	Input, Output, and Conversions
	File Opening, Loading and Saving
	Import from Video Files
	Setting Block Parameters for this Example
	Configuration Parameters

	Export to Video Files
	Setting Block Parameters for this Example
	Configuration Parameters

	Batch Process Image Files
	Configuration Parameters

	Display a Sequence of Images
	Pre-loading Code
	Configuration Parameters

	Partition Video Frames to Multiple Image Files
	Setting Block Parameters for this Example
	Using the Enabled Subsystem Block
	Configuration Parameters

	Combine Video and Audio Streams into a Single Video File
	Setting Up the Video Input Block
	Setting Up the Audio Input Block
	Setting Up the Output Block
	Configuration Parameters

	Import MATLAB Workspace Variables
	Import a Live Video Stream

	Colorspace Formatting and Conversions
	Resample Image Chroma
	Setting Block Parameters for This Example
	Configuration Parameters

	Convert Intensity to Binary Images
	Thresholding Intensity Images Using Relational Operators
	Thresholding Intensity Images Using the Autothreshold Block

	Convert R'G'B' to Intensity Images
	Process Multidimensional Color Video Signals

	Data Formats
	Video Formats
	Defining Intensity and Color

	Video Data Stored in Column-Major Format
	Image Formats
	Binary Images
	Intensity Images
	RGB Images

	Display and Graphics
	Display
	View Streaming Video in MATLAB using Video Player and Deployable
	Video Player System Object
	Deployable Video Player System Object

	Preview Video in MATLAB using MPlay Function
	View Video in Simulink using the Video Viewer and To Video Displ
	Video Viewer Block
	To Video Display Block

	View Video in Simulink using MPlay Function as a Floating Scope
	MPlay
	Toolbar Buttons
	Playback Toolbar — Workspace and File Sources
	Playback Toolbar — Simulink Sources
	Configuration
	Configuration Core Pane
	Using the Keyboard commands respect playback modes
	Configuration Sources Pane
	Configuration Visuals Pane
	Configuration Tools Pane
	Video Information
	Color Map for Intensity Video
	Frame Rate
	Saving the Settings of Multiple MPlay GUIs
	Message Log
	Status Bar

	Graphics
	Abandoned Object Detection
	Initialize Required Variables and System Objects
	Video Processing Loop
	Annotate Video Files with Frame Numbers
	Color Formatting
	Inserting Text
	Configuration Parameters

	Registration and Stereo Vision
	Feature Detection, Extraction, and Matching
	Detect Edges in Images
	Detect Lines in Images
	Setting Block Parameters
	Configuration Parameters

	Detect Corner Features in an Image
	Find Possible Point Matches Between Two Images
	Measure an Angle Between Lines

	Image Registration
	Automatically Determine Geometric Transform for Image Registrati
	Transform Images and Display Registration Results
	Remove the Effect of Camera Motion from a Video Stream.

	Stereo Vision
	Compute Disparity Depth Map
	Find Fundamental Matrix Describing Epipolar Geometry
	Rectify Stereo Images

	Motion Analysis and Tracking
	Detect and Track Moving Objects Using Gaussian Mixture Models
	Video Mosaicking
	Track an Object Using Correlation
	Create a Panoramic Scene

	Geometric Transformations
	Rotate an Image
	Resize an Image
	Crop an Image
	Interpolation Methods
	Nearest Neighbor Interpolation
	Bilinear Interpolation
	Bicubic Interpolation

	Automatically Determine Geometric Transform for Image Registrati

	Filters, Transforms, and Enhancements
	Adjust the Contrast of Intensity Images
	Adjust the Contrast of Color Images
	Remove Periodic Noise from a Video
	Remove Salt and Pepper Noise from Images
	Sharpen an Image

	Statistics and Morphological Operations
	Find the Histogram of an Image
	Correct Nonuniform Illumination
	Count Objects in an Image

	Code Generation
	System Objects that Generate Code
	Functions that Generate Code
	Shared Library Dependencies
	Accelerating Simulink Models

	Index

	tables
	Supported Computer Vision System Toolbox System Objects

